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Abstract 

It is challenging to predict neurological outcomes of acute spinal cord injury (SCI) considering 

issues such as spinal shock and injury heterogeneity. Deep learning-based radiomics (DLR) 

were developed to quantify the radiographic characteristics automatically using a convolutional 

neural network (CNN), and to potentially allow the prognostic stratification of patients. We 

aimed to determine the functional prognosis of patients with cervical SCI using machine 

learning approach based on MRI and to assess the ability to predict the neurological undergone 

MRI and had an American Spinal cord Injury Association Impairment Scale (AIS) assessment 

at 1 month after injury, enrolled with a total of 294 MR images. Sagittal T2-weighted MR 

images were used for the CNN training and validation. The deep learning framework 

TensorFlow was used to construct the CNN architecture. After we calculated the probability of 

the AIS grade using the DLR, we built the identification model based upon the random forest 

using 3 features: the probability of each AIS grade obtained by the DLR method, age, and the 

initial AIS grade at admission. We performed a statistical evaluation between the actual and 

predicted AIS. The accuracy, precision, recall and f1 score of the ensemble model based on the 

DLR and RF were 0.714, 0.590, 0.565 and 0.567, respectively. The present study demonstrates 



 

that prediction of the short-term neurological outcomes for acute cervical spinal cord injury 

based on MRI using machine learning is feasible. 
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Introduction 

Acute spinal cord injury (SCI) affects approximately 200,000 people globally each year and 

has a devastating impact on quality of life (QOL).[1] Accurate prediction of neurological 

outcomes for acute cervical SCI facilitates estimations for independence in activities of daily 

living (ADL). Furthermore, with knowledge of the neurological prognosis, we can set 

rehabilitation goals and can more readily assess the therapeutic effect in clinical trials for SCI 

treatments. Although there is a great need for early biomarkers of SCI in the acute phase, it is 

challenging to predict neurological outcomes due to spinal shock and injury heterogeneity.  

Magnetic Resonance Imaging (MRI) is the gold standard to visualize soft tissue injury, as 

well as spinal cord compression and internal structures. Several studies have suggested the 



 

usefulness of early MRI as a prognostic tool. [2][3][4]  Previous conventional MRI studies have 

demonstrated that the extent of the intramedullary hemorrhage and the canal diameter at the 

location of the maximum spinal canal compression (MSCC) are important predictors of 

neurologic outcome[5][6]. It is inconclusive, however, if these MRI characteristics can 

determine the prognosis for SCI because these studies had few subjects and limited evidence.  

Deep learning-based radiomics (DLR) have been developed to quantify radiographic 

characteristics automatically using a convolutional neural network (CNN), and to potentially 

allow the prognostic stratification of patients. DLR is superior to conventional methods, which 

require the extraction of pre-designed and hand-crafted features from segmented regions of 

interest, in that a prognosis by DLR can be determined using automatic image feature 

extraction. Currently there are reliable DLR-based studies to determine cancer phenotypes or 

survival prognosis[7][8]. A Random Forest (RF) is a well-established method of machine 

learning based on decision trees.[9] A decision tree is a model that represents laws in 

classification and regression in a tree-like structure. By combining various decision trees, it 

enables us to create a highly accurate classification model by majority voting. 



 

There are few previous studies using machine learning to predict functional outcomes in the 

spine region, thus we sought to apply this promising technique to predict outcomes after acute 

SCI. The purpose of this study was to assess the ability of machine learning to determine the 

neurological prognosis of patients with cervical SCI using MRI. 

 

Materials & Methods 

Patients 

This study was approved by the IRB of four institutions (Chiba University Graduate School 

of Medicine, Kimitsu Chuo Hospital, Asahi General Hospital, Chiba Emergency Medical 

Center) and informed consent was waived due to the retrospective analysis. We retrospectively 

reviewed the medical records at 5 institutions and enrolled patients with cervical spinal cord 

injury who had undergone MRI within 24 hours after injury and had completed an American 

Spinal cord Injury Association [ASIA] Impairment Scale (AIS) assessment at both admission 

and 1 month after injury. Patients with pre-existing or comorbid conditions that could modify 

neurological symptoms were excluded such as patients with a history of cerebral infraction, 

thoracolumbar SCI, or impaired consciousness from causes such as head injury or dementia. 



 

Two hundred and thirty-six patients met the inclusion criteria, and 21 patients (2 with dementia, 

6 with brain injury, 2 with history of cerebral infarction, 1 with previous history of cervical SCI, 

1 with pre-existing paralysis due to cervical spondylotic myelopathy, 3 with thoracolumbar SCI 

and 6 with low MRI quality) were excluded and 215 patients were enrolled. Surgical indications 

and surgical procedure selection were not standardized due to the multicenter nature of the 

study. Basically, spinal cord injuries without radiographic abnormality (SCIWORA) were 

treated non-operatively in most cases, and unstable spinal injuries with fractures or 

discoligamentous injuries were treated with fusion surgery. Fifty-nine of the 215 patients 

underwent surgical treatment 

 

AIS Measurement  

The AIS, which is considered to be a reference standard for the neurologic examination of 

patients with SCI, and a reliable measurement with discriminative and evaluative values[10], 

was used as the neurologic measurement tool and outcome measure at admission and at 4 (range 

3 to 5) weeks after injury. The following scale is used to classify the degree of impairment.[11]  

A: Complete. No sensory or motor function is preserved in the sacral segments. 



 

B: Incomplete. Sensory but not motor function is preserved below the neurological level and 

includes the sacral segments. 

C: Incomplete. Motor function is preserved below the neurological level, and more than half of 

key muscles below the neurological level have a manual muscle test (MMT) grade less than 3. 

D: Incomplete. Motor function is preserved below the neurological level, and more than half of 

key muscles below the neurological level have a MMT grade greater than or equal to 3. 

E: Normal. 

  

MRI Dataset 

All patients underwent urgent MRI within 24 hours after injury. We collected the mid-sagittal 

plane of the T2-weighted image (T2WI) of the cervical spinal cord for the CNN training and 

validation. Previous studies using MRI images have primarily used indicators extracted from 

T2-weighted sagittal images[12], thus we also used T2-weighted sagittal images in this study. 

The MRIs were labeled with the patient’s AIS at 4 weeks after injury. The MRIs were 

performed using either a 1.5 T or 3.0 T MR scanner. Although the T2WI of MRI acquisition 

protocol was not standardized across the institutions, the following parameters were generally 



 

used; repetition time/echo time=3000-5000/100-110ms; flip angle=180°; slice 

thickness=3.0mm; field-of-view=240 × 240mm2; matrix size=224-288 × 224-288. 

 

Image Preprocessing  

The MRIs of the cervical spinal cord were acquired as digital imaging and communications in 

medicine (DICOM) files and were exported in jpeg format from the picture archiving and 

communication system (PACS) in each hospital. A board certified orthopaedic surgeon (SO, 7 

years of experience) performed the image preprocessing using a Photo application (Apple Inc., 

Cupertino, CA) to create the image for CNN training. The region of interest (ROI) was applied 

to crop a region containing the injured zone and the anteroposterior border of the spinal canal at 

the level of injury, which had an aspect ratio of 1:1 (Fig.1).  

 

Machine Learning Algorithms   

The CNN architecture was constructed using Python programming language, version 3.6.7 

(https://www.python.org) and Keras, version 2.2.4 with TensorFlow, version 1.14.0 

(https://www.tensorflow.org) at the backend. In this study, we used the Xception architectural 



 

model, which had been trained previously using images with ImageNet.[13] The input images 

were resized to 299 × 299 pixels. We then fine-tuned the model with the dataset of MR images 

from patients with an AIS of A, B, C, D or E. The weights of the first 108 out of 135 layers 

were frozen and the weights in the other layers were retrained with our data. The network was 

trained for 100 epochs with a learning rate of 0.1, which was reduced if no improvement was 

seen. Convergence of the model training was monitored using cross-entropy loss. All images 

were randomly augmented using the ImageDataGenerator 

(https://keras.io/preprocessing/image/) by a rotation angle range of 20°, width shift range of 0.2, 

height shift range of 0.2, brightness range of 0.3–1.0, and a horizontal flip of 50%.  

The performance of the CNN model for predicting the AIS was evaluated with five-fold cross-

validation. Then, the concordance rate between the actual and predicted AIS was measured. The 

MR images of SCI were randomly divided into five equal-sized independent subgroups. Data of 

the four subgroups were designated as the training dataset and the remaining independent 

subgroup served as the validation dataset. The prediction was made based upon the highest 

probability of the five grades: A, B, C, D or E. This cross-validation process was repeated five 

times. After calculating the probability of the AIS grade using the DLR, we built the 



 

identification model based on random forest model using three features; the probability of each 

AIS grade obtained by the DLR, age, and the initial AIS grade at admission (Fig.2). The 

performance of the random forest was also evaluated using cross-validation in the same method 

that was used for the evaluation of the DLR. The CNN and random forest were trained and 

validated on a computer with a GeForce RTX 2060 graphics processing unit (NVIDIA, Santa 

Clara, CA), a Core i7-9750 central processing unit (Intel, Santa Clara, CA), and 16 GB of 

random access memory.  

 

Statistical and Data Analysis  

Accuracy is a percentage of the correct predictions out of the total prediction made. Recall is a 

measure of the number of correct positive predictions from all positives in a dataset, also known 

as sensitivity. Precision is a measure for the correctness of a positive prediction and is also 

known as positive prediction value. F score is the weighted average of precision and recall. To 

calculate the accuracy, precision, recall and F score, we obtained the true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN). The accuracy, recall, precision and F 



 

score were defined as follows; accuracy = (TP + TN)/ (TP + FP + FP + FN + TN); recall = TP/ 

(TP + FN); precision = TP/ (TP + FP); F1 score = 2 × recall × precision/ (recall + precision). 

All computations were done using the statistical package JMP (version 13.2.0.; SAS Institute 

Inc., Cary, NC). Comparisons were made between the five groups: patients with AIS grade A, 

grade B, grade C, grade D or grade E. Parametric variables were evaluated using a one-way 

analysis of variance (ANOVA). A Student t test was used to compare the potential covariates 

(sex and age, time to the MRI and days to discharge). A P-value of < 0.05 was considered 

significant in two-sided tests of statistical inference.  

 

Results 

Patient Characteristics  

The baseline demographic data are shown in Table 1. The number of patients whose AIS at 1 

month after injury was A, B, C, D, or E was 25, 4, 45, 91 and 50, respectively. The number of 

MRI slices with an AIS at 1 month after injury of A, B, C, D, or E was 35, 5, 62, 124 and 68, 

respectively. The average age of the AIS group E was significantly younger than that of the 

other groups. Males accounted for approximately 80% of all cases, which was consistent with 



 

previous studies.[14],[15],[16] Most patients underwent MRI within 5 hours of injury on 

average. The patients with more severe SCIs had a greater number of days to discharge. Table 2 

shows the AIS at admission and 1 month after injury. The number of patients whose AIS at 

admission/AIS at 1 month after injury was A, B, C, D or E were 25/25, 19/4, 62/45, 82/91, and 

27/50, respectively. After 1 month, 67.0% patients had the same AIS as at the time of 

admission. 

 

Performance of the DLR 

Tables 3 indicates the confusion matrix of the ground truth and predicted AIS using the 

MRIs. Table 3 indicates that 143 out of 294 (48.6%) of the MRI images correctly predicted the 

AIS, and 242 out of 294 (82.3%) of the image predictions were within one off the correct AIS. 

The accuracy of the DLR was 0.486. The precision, recall, and F1 were not available because 

the DLR did not predict any AIS of B. 

 

Performance of The DLR and RF 



 

Tables 4 indicates the confusion matrix of the ground truth and predicted AIS using the DLR 

and RF. Two hundred and ten out of 294 (71.4%) of the MR images correctly predicted the AIS, 

and 277 out of 294 (94.2%) of the image predictions were within one of the correct AIS. The 

accuracy, precision, recall and F1 score were 0.714, 0.590, 0.565 and 0.567, respectively. 

 

Feature Importance 

Among the three parameters (AIS probabilities, age and initial AIS at admission), the 

importance of the factors predicting the AIS from the random forest was calculated. The feature 

importance of the probability of an AIS of A, B, C, D and E predicted by the DLR were 0.1115, 

0.0708, 0.126, 0.128 and 0.1132, respectively. The feature importance of age and the initial AIS 

were 0.1311 and 0.297, respectively. 

 

Discussion 

The present study demonstrates that DLR, which uses only MR images, could predict the 

short-term neurological outcomes of acute cervical SCI based on an MRI taken 24 hours after 



 

injury with accuracy of 0.486. Moreover, the combination of the DLR and RF could more 

accurately determine the prognosis than the DLR-only method with accuracy of 0.714. 

Our study revealed that using DLR, the accuracy of prediction of AIS at one month after 

injury was 0.486, which was a moderate agreement. Recently, DLR research has received 

increasing interest from the medical field and the effectiveness of radiomics has been 

demonstrated. A previous report suggested that radiomics identified a prognostic phenotype 

existing both in lung and head-and-neck cancers using data from computed tomography[17]. 

Another report also concluded that imaging radiomics could predict the tumor regression grade 

of patients with rectal cancer who were receiving neoadjuvant chemo-radiation therapy[18]. 

CNNs have an advantage over standard MRI analyses because they automatically extract 

features and classify images using back-propagation, and do not require manual feature 

extraction. Unlike the DLR method, which automatically determines neurological prognosis 

simply by the image input, conventional methods require manual effort to measure injury 

characteristics. According to previous reports, a longer intramedullary hemorrhage was 

independently predictive of worse neurologic outcomes, particularly in patients with complete 

injuries.[5][19] Several papers have also concluded that the presence of hemorrhage was 



 

associated with worse neurological outcomes. However, the main limitation of these studies is 

that the timing of the baseline MRI varied greatly, ranging from hours after hospital admission 

to 14 days post-injury. The present study, in which the timing of the baseline MRI was limited 

to within 24 hours after injury, suggests that MR images in this study were not limited by the 

time-dependent traumatic changes which may have influenced the previous studies. Another 

report suggested that a smaller spinal canal diameter at the MSCC was associated with worse 

neurologic recovery.[12] A systematic review indicated that other MRI characteristics might be 

good prognostic factors, such as a more extensive SCI lesion size, the presence of soft-tissue 

injuries and disc herniations, and more cord swelling. However, these findings need to be 

confirmed in larger prospective studies. 

The present study demonstrated that the combination of the DLR and RF could more 

accurately determine the prognosis of acute cervical SCI. The RF is one of the well-known 

ensemble tree-algorithms to increase the prediction accuracy, decrease the variance between 

datasets, and avoid overfitting. The ensemble trees are simply the junction of several models 

used to perform a classification task based on the prediction made by every single tree.[20] 

Furthermore, this study also demonstrates that the probabilities predicted by the DLR and the 



 

initial AIS were more efficient information for the final prediction. A previous report also 

concluded that the strongest predictors of long-term motor score recovery were the admission 

AIS motor score[21], supporting the present study. 

There are few studies applying machine learning to determine neurological prognosis of 

cervical SCI using MRI. A recent report used 43 features extracted from the MRI and patients’ 

information such as Brain and Spinal Cord Injury Center (BASIC) score, Maximum Canal 

Compromise (MCC), length measurement of T2 hyperintensity on the sagittal plane, age, sex, 

body weight and mechanism of injury. They applied a 2-class discrimination model using 

XGBoost, which is an ensemble learning algorithm based on decision tree, to predict the AIS 

(A, B, C or D, E) of cervical SCI at 6 months after the injury and obtained an accuracy of 

81.1%. [22] Deep learning-based segmentation of the spinal cord was applied to patients with 

acute spinal cord injury. Volumes of injury derived from automated lesion segmentation 

correlated with measures of motor score in the acute phase but not with motor score at 

discharge.[2] The machine learning model for predicting in-hospital mortality and one-year 

mortality was developed. The Spinal Cord Injury Risk Score (SCIRS) consists of age, complete 

injury or not, cervical level of injury or not, AOSpine classification of spinal column injury 



 

morphology, and abbreviated injury scale scores. For SCIRS, the values for the area under the 

receiver operating characteristics curve for one-year mortality prediction was 0.86, for in-

hospital mortality was 0.85. [23] 

There are several limitations in the present study. First, the images need to be manually 

cropped prior to the DLR assessment, which may increase the bias. Our future research will 

construct an object detection model to identify the center of the injury and address this 

limitation. Second, the number of patients and MR images included in this study was small. 

Although we applied fine-tuning and data augmentation, a larger data set is needed to improve 

the accuracy for determining neurological prognosis after SCI. Third, the potential modifiers 

such as surgical interventions or blood pressure management were not considered in this 

analysis. However, despite increasing acceptance of early surgery after SCI, the timing of 

surgery and which patient population will benefit from surgery are not definitive.[24] In 

addition, no blood pressure management was performed in this study.[25] Lastly, we focused on 

the neurological prognosis at one month after the injury, and not on the long-term neurological 

prognosis. Patients with severe paralysis have greater difficulty in follow up hospital visits 



 

compared to patients with mild or no symptoms, so long-term follow up can be challenging 

after severe injuries. 

 

Conclusion 

Our study suggests that the combination of the DLR and RF can robustly determine the 

neurological prognosis of acute cervical SCI using MRI taken within 24 hours. This method 

could be a novel imaging biomarker for SCI patients, which facilitates better patient care and 

estimations for future independence in ADL and QOL.  
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Figure Legends 

Figure 1. 

The region of interest was applied to crop a region containing the injured zone and the 

anteroposterior border of the spinal canal at the level of injury, which had an aspect ratio of 1:1 

 

Figure 2. 

Final prediction was made based on random forest using three parameters;  

the probability of each AIS grade obtained by deep learning-based radiomics model, the initial 

AIS grade at admission and age. 

jpg, joint photographic experts group; AIS, American spinal cord injury association Impairment 
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