Mixed venous oxygen tension is a crucial prognostic factor in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension (混合静脈血酸素分圧は肺動脈性肺高血圧症と慢性血栓塞栓性肺高血圧症の重要な

予後因子である)

千葉大学大学院医学薬学府

先端医学薬学専攻

(主任:鈴木 拓児教授)

永田 淳

Abstract

BACKGROUND: The prognostic value of mixed venous oxygen tension (PvO_2) at pulmonary hypertension diagnosis treated with selective pulmonary vasodilators remains unclear. This study sought to investigate the association of PvO_2 with long-term prognosis in pulmonary arterial hypertension (PAH) and medically treated chronic thromboembolic pulmonary hypertension (CTEPH) and to identify the distinct mechanisms influencing tissue hypoxia in patients with CTEPH or PAH.

METHODS: We retrospectively analyzed data from 138 (age: 50.2 ± 16.6 years, 81.9% women) and 268 (age: 57.4 ± 13.1 years, 72.8% women) patients with PAH and CTEPH, respectively, diagnosed at our institution from 1983 to 2018. We analyzed the survival rates of patients with/without tissue hypoxia (PvO₂ <35 mmHg) and identified their prognostic factors based on the pulmonary hypertension risk stratification guidelines.

RESULTS: Survival was significantly poorer in patients with tissue hypoxia than in those without it for PAH (P=.001) and CTEPH (P=.017) treated with selective pulmonary vasodilators. In patients with PAH, PvO₂ more strongly correlated with prognosis than other hemodynamic prognostic factors regardless of selective pulmonary vasodilators usage. PvO₂ was the only significant prognostic factor in patients with CTEPH treated with pulmonary hypertension medication. Patients with CTEPH experiencing tissue hypoxia exhibited significantly poorer survival than those in the intervention group (P<.001). PvO₂ more

strongly correlated with the cardiac index (CI) than the alveolar-arterial oxygen gradient (AaDO₂) in PAH; whereas in CTEPH, PvO₂ was more strongly correlated with A-aDO₂ than with CI.

CONCLUSIONS: PvO_2 may represent a crucial prognostic factor for pulmonary hypertension. The prognostic impact of tissue hypoxia affects different aspects of PAH and CTEPH, thereby reflecting their distinct pathogenesis.

Keywords:

chronic thromboembolic pulmonary hypertension; mixed venous oxygen tension; pulmonary artery hypertension; risk stratification; tissue hypoxia; respiratory care; pulmonology

BACKGROUND

Pulmonary hypertension (PH) is a progressive disease characterized by abnormal remodeling of small pulmonary arteries, elevated pulmonary arterial pressure, and increased pulmonary vascular resistance (PVR) owing to various etiologies; it can lead to right ventricular dysfunction and death [1]. Currently, selective pulmonary vasodilators that act via three different pathways are available for treating pulmonary arterial hypertension (PAH), and clinicians recommend initial combination therapy [2,3]. Despite the establishment of treatment algorithms and reduced mortality in PAH, the number of patients in the red zone (the high-risk group) as per the European Society of Cardiology (ESC) and European Respiratory Society (ERS) PH risk stratification is still high [4]. Conversely, patients with medically treated chronic thromboembolic pulmonary hypertension (CTEPH) not indicated for pulmonary endarterectomy (PEA) or balloon pulmonary angioplasty (BPA) have poor prognosis [5].

The high mortality of PAH warrants an accurate prognosis estimation for guiding its management. The 2015 ESC/ERS PH risk stratification guidelines proposed the right atrial pressure (RAP), cardiac index (CI), and mixed venous oxygen saturation (SvO₂) as hemodynamic prognostic risk factors for PAH, and French risk stratification also defined intermediate-risk (yellow zone) or high-risk (red zone) criteria as RAP \geq 8 mmHg and CI <2.5 L/min/m² [6,7]. Sandqvist et al. reported that the ESC/ERS risk stratification for PAH

also predicted survival in CTEPH [8]. Hurdmane et al. reported that age, SvO₂, and World Health Organization (WHO) functional class were independent predictors of survival in 101 registered patients with PH and chronic obstructive pulmonary disease (COPD) in the ASPIRE (Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral Centre) study; moreover, an SvO₂ of 65% was reported as a better threshold for defining poor outcomes [9]. SvO₂ improves the adequacy of tissue oxygenation, which is an essential component of normal organ function. Moreover, SvO2 and mixed venous oxygen tension (PvO₂) are related to tissue oxygenation; an SvO₂ of 65% corresponds to a PvO₂ of 35 mmHg according to the oxygen dissociation curve in the normal state [10]. Mithoefer et al. reported that normal PvO₂ values negatively correlate with age; at 70 years, PvO₂ decreases to approximately the lower limit of 35 mmHg [11,12]. Accordingly, a PvO₂ <35 mmHg is used as a key clinical threshold for tissue hypoxia in COPD and PH [10,11,13-15]. Physiologically, unlike SvO₂, PvO₂ reflects actual tissue hypoxia. However, the relevance of tissue hypoxia (defined by a PvO₂ <35 mmHg) in PAH and CTEPH pathogenesis has not been reported. Moreover, tissue oxygenation is reportedly superior to cardiac function for assessing the disease severity and predicting survival in PAH [16]. Kapitan et al. reported that the main cause of hypoxemia in CTEPH was ventilation-perfusion mismatch, and that low PvO₂, and PEA improved both [17]; nonetheless, these issues remain controversial. Thus, in the present study, we aimed to investigate the association of PvO_2 with long-term prognosis in patients with PAH and medically treated CTEPH and to determine the relevance of PvO₂ relative to other prognostic factors. Furthermore, we aimed to clarify and compare the mechanisms underlying tissue hypoxia in CTEPH and PAH.

METHODS

Study Participants and Design

This retrospective cohort study included patients diagnosed with PAH or CTEPH (naïve patients who had not received PH treatment) at the Chiba University Hospital between January 1983 and December 2018 (Figure S1). These patients were identified from the Chiba University Hospital Pulmonary Hypertension Center Registry. Hemodynamic parameters were measured during the first right heart catheterization (RHC). The patients were followed up until September 2021. Follow-up data were obtained by contacting the patients or their physicians.

Ethical Approval

This study was conducted in accordance with the tenets of the amended Declaration of Helsinki. Patient identity was concealed in this study, and data were compiled according to the requirements of the Japanese Ministry of Health, Labour and Welfare, which is dedicated to privacy, information technology, and civil rights. The research protocol for this study was approved by the Research Ethics Committee of the Chiba University School of Medicine (approval number: 2584); we had already performed "opt-out" by notifying or disclosing information. Written informed consent was obtained from all patients who were enrolled since 2009, when the requirement became mandatory (approval number: 826). In the case of patients who died before 2008, written informed consent was obtained from their next of kin when we examined prognosis in the relevant study (approval number: 84). The study database was anonymized, and all experiments were performed in accordance with the relevant guidelines and regulations.

PAH

Patients with a mean pulmonary artery pressure (mPAP) \geq 25 mmHg, pulmonary artery wedge pressure (PAWP) \leq 15 mmHg, and PVR >3 Wood units were considered to have PAH [6]. Patients suspected of complicating PH due to chronic pulmonary disease were excluded where possible by having computed tomography scans read by two respiratory experts. We diagnosed 167 patients with PAH but excluded 13 without PvO₂ data breathing room air, 11 who died due to other diseases during follow-up, 4 with left to right shunt due to atrial septal defect, and 1 with anemia (hemoglobin \leq 8 g/dL) (Figure S1A). Of the remaining 138 patients analyzed, 61 were diagnosed with idiopathic or hereditary PAH (Table S1). By July 2021, 61 patients had died (35 patients treated with selective pulmonary vasodilators) and 77 had survived. The mean follow-up period was 7.0±7.0 years.

CTEPH

Robust evidence supports a new definition of pre-capillary PH, referred to as CTEPH [5]. Patients with CTEPH were defined as follows: (1) mPAP ≥25 mmHg and PAWP ≤ 15 mmHg; (2) persistent symptoms >3 months; and (3) chronic thrombi on lung perfusion images, enhanced computed tomography, or pulmonary angiography. We diagnosed 319 patients with CTEPH but excluded 5 with accompanying respiratory diseases, 3 without data on PvO₂ breathing room air, 19 who died due to other diseases during followup, and 24 who died perioperatively (Figure S1B). Five patients had hyperthyroidism and six had hypothyroidism; however, they were well managed with treatment, and hence these patients were included. No severe anemia was observed. The remaining 268 patients were classified into three groups according to the treatment strategy. Patients who underwent PEA and BPA (either BPA after PEA or PEA after BPA) were classified into the PEA/BPA group. Patients treated with selective pulmonary vasodilators composed the PH medication group. Patients treated solely with anticoagulants and oxygen therapy composed the supportive group. By July 2021, 60 patients had died (20 patients with the PEA/BPA group and 25 with the PH medication group) and 208 survived. The mean follow-up period was 9.6±6.9 years. RHC

All patients were admitted and underwent RHC in the supine position with zero point of the transducer set at the intersection of the fourth intercostal space and mid-chest level. The pulmonary pressure was measured from the superior vena cava to PAWP at endexpiration in room air conditions whenever possible. The cardiac output was measured using a thermodilution method averaging at least three within 10% variation, and the CI and PVR were calculated.

Blood Gas Analysis

Mixed venous blood for gas analysis was obtained from the distal tip of the Swan–Ganz catheter and was freely located in the major pulmonary artery. Blood gas analysis of arterial oxygen tension (PaO₂) was performed by puncture of the radial or femoral artery. All blood gas analyses were performed in room air during the RHC and measured at the time of (1) the first diagnosis of pulmonary hypertension and (2) the latest follow-up. The alveolar-arterial oxygen gradient (A-aDO₂) was calculated using the following equation: $A-aDO_2 = 150 - PaCO_2/0.8 - PaO_2$, where $PaCO_2$ refers to the arterial carbon dioxide tension.

Statistical Analysis

The results are expressed as mean ± standard deviation for continuous variables and as numbers and percentages for categorical variables. If the results did not show a normal distribution, a nonparametric test was performed. Comparisons between the groups were performed using the chi-squared test, Mann–Whitney U test, or analysis of variance with the Kruskal–Wallis test as appropriate. The Kaplan–Meier method was used to estimate the

disease-specific and overall survival using the log-rank test for comparison. Differences between continuous variables, such as hemodynamic or oxygenation parameters, were compared using the paired t-test. Univariate and multivariate Cox proportional hazard models were used to examine the prognostic factors. Variable selection was based on the ESC/ERS risk stratification 2015 in addition to age, mPAP, PVR, A-aDO₂, brain natriuretic peptide (BNP), 6-min walk distance (6MWD), percent predicted forced vital capacity, percent predicted carbon monoxide diffusing capacity (DLCO, %pred.), and WHO functional class. The predicted survival span in elderly patients is short, and mPAP decreased as patients with PAH became older [18]. A multivariate analysis was carried out with the addition of age, which was considered important as a prognostic factor, and the hemodynamic parameters, included in the 2015 ESC/ERS PH risk stratification guidelines and French risk stratification intermediate-risk (yellow zone) or high-risk (red zone) criteria. However, as ESC/ERS risk stratification for CTEPH was not widely accepted, we built another model in the PEA/BPA and PH medication groups based on significant prognostic factors in the univariate analysis. We considered a maximum of five parameters in a multivariate analysis for the number of events (range 20-35). Pearson's correlation coefficient and multiple regression analysis were used to estimate the correlational and confounding factors for PvO_2 . Statistical significance was set at P < .05. Significant differences in the comparison of two survival curves among the three groups were

determined using Bonferroni correction. All statistical analyses were performed using GraphPad Prism 8[®] (GraphPad Software, Inc., La Jolla, CA, USA) and JMP Pro 15 (Japanese version; SAS Institute Inc., Tokyo, Japan).

RESULTS

Patient Characteristics Stratified by PvO2 of 35 mmHg and Categorized by Treatment

The mean age of the 138 patients with PAH was 50.2±16.6 years; the majority were women (81.9%), and 44.2% were diagnosed with idiopathic (IPAH) or heritable (HPAH) PAH (Table S1). Table 1 shows the characteristics of patients with PAH stratified by PvO₂ of 35 mmHg at diagnosis. Patients with PvO₂ <35 mmHg showed that most parameters (WHO functional class, hemodynamics, gas exchange, and even exercise endurance) were significantly worse compared to those without. Regarding the characteristics of patients treated and not treated with selective pulmonary vasodilators, patients treated with selective pulmonary vasodilators were significantly older and had significantly lower PaO₂ and higher A-aDO₂ than in untreated patients; however, no significant differences were observed in the other hemodynamic characteristics (Table S2). In Japan, epoprostenol and bosentan have been available since 1999 and 2005, respectively. Among the untreated group, 25 patients died before 1999, 3 had oxygen therapy only for PH associated with portal hypertension, 3 had connective tissue disease (CTD) associated PAH that required intensified treatment of CTD with immunosuppressive drugs, and 3 had side effects from selective pulmonary vasodilators that failed to treat the PAH.

The mean age of the 268 patients with CTEPH was 57.4 \pm 13.1 years, and the majority were women (72.8%). Table 2 indicates the characteristics of patients with CTEPH stratified by PvO₂ of 35 mmHg at diagnosis. The results were similar to those in PAH: patients with PvO₂ <35 mmHg showed that WHO functional class, hemodynamics, gas exchange, and even exercise endurance were significantly worse compared to those without in CTEPH. There was a significant difference in treatment between the two groups. Table S3 summarizes the patient characteristics according to the treatment modality. The PEA/BPA group was significantly younger and had a significantly higher mPAP than the PH medication group. In the PEA/BPA group, 51 patients had residual PH and were treated with selective pulmonary vasodilators.

Survival Analysis of the Treatment Groups

Patients with PAH and tissue hypoxia at diagnosis had significantly poorer survival than those without tissue hypoxia, regardless of treatment with selective pulmonary vasodilators (treated: P=.001, Figure 1A; untreated: P<.001, Figure 1B). These results were similar in the IPAH/HPAH group (treated: P=.006, Figure S2A; untreated: P=.011, Figure S2B). For patients with CTEPH in the PEA/BPA group, there was no significant difference in survival between those with and without tissue hypoxia (P=.445, Figure 2A). However, survival was significantly poorer in patients with tissue hypoxia than in those without tissue hypoxia in the PH medication (P=.017, Figure 2B) and supportive (P=.043) groups. In the absence of tissue hypoxia at diagnosis, there was a significant difference in survival among the three groups, with poor prognosis in the supportive group (P=.002); however, no significant difference was observed between the PEA/BPA and PH medication groups (P=.366, Figure 2C). In the presence of tissue hypoxia at diagnosis, significant differences in survival were observed among the three groups (P<.001) and between the PEA/BPA and PH medication groups (P<.001, Figure 2D).

Prognostic Factors Stratified by Treatment

Univariate analyses revealed that age, mPAP, CI, CI <2.5 L/min/m², PVR, PaO₂, PvO₂, PvO₂ <35 mmHg, SvO₂, A-aDO₂, BNP, 6MWD, DLCO, %pred., WHO functional class, and medication significantly correlated with prognosis in all PAH patients. Multivariate analyses were made by two models: using continuous variables by ESC/ERS risk stratification, medication, and age as model 1; and using categorical variables by ESC/ERS and French risk stratification in yellow and red zone, age, and medication as model 2. In model 1, age, CI, PvO₂, and medication were significant prognostic factors, while in model 2, PvO₂ <35 mmHg, CI <2.5 L/min/m², age, and medication were significant prognostic factors (Table 3). Furthermore, additional analyses with/without treatment in PAH showed that age, CI, CI <2.5 L/min/m², PVR, PaO₂, PvO₂, PvO₂ <35 mmHg, SvO₂, A-aDO₂, BNP, 6MWD, and WHO functional class were significant prognostic factors in the group treated with selective pulmonary vasodilators (Table 4), and that mPAP, CI, CI <2.5 L/min/m², PVR, PvO₂, PvO₂ <35 mmHg, SvO₂, A-aDO₂, DLCO, %pred., and WHO functional class were significantly correlated with prognosis in the untreated group (Table 5). As to multivariate analyses, in the group treated with selective vasodilators, PvO₂, CI, and age were prognostic factors in both models 1 and 2 (Table 4). Whereas in the untreated group, PvO₂ was the only significant prognostic factor in models 1 and 2 (Table 5).

In all patients with CTEPH, PvO_2 and PEA/BPA treatment were prognostic factors, however, $PvO_2 <35$ mmHg was not (Table 6). Multivariate analyses showed that PEA/BPA treatment and PvO_2 or $PvO_2 <35$ mmHg were significant prognostic factors by models 1 and 2, respectively (Table 6).

Furthermore, we conducted additional analyses by treatment modality in CTEPH. In the PEA/BPA group, only 6MWD and DLCO, %pred. correlated with the prognosis; however, in the PH medication group, RAP, mPAP, PVR, PaO₂, PvO₂, PvO₂ <35 mmHg, RAP \geq 8 mmHg, SvO₂, A-aDO₂, BNP, 6MWD, and WHO functional class significantly correlated with the prognosis (Tables 7 and 8). In the PEA/BPA group, multivariate analyses showed that no significant prognostic factors other than age remained in any of the models (Table 7), whereas in the PH medication group, PvO_2 or $PvO_2 <35$ mmHg were significant prognostic factor by models 1, 2 and 3, respectively (Table 8).

Relationships between PvO₂ and CI/A-aDO₂

In patients with PAH, PvO₂ significantly correlated with CI and A-aDO₂ (CI: r=0.642, *P*<.001; A-aDO₂: r=-0.549, *P*<.001; Figure S3A). The standardized coefficients of CI were larger than those of A-aDO₂ in the multiple regression analysis, suggesting that CI was a more important determinant of PvO₂ than was A-aDO₂ (CI: β =0.522, A-aDO₂: β =-0.435; Table S4).

In patients with CTEPH, PvO₂ correlated with A-aDO₂ and CI (CI: r=0.470, P<.001; A-aDO₂: r=-0.678, P<.001; Figure S3B). Conversely, the standardized coefficients of A-aDO₂ were larger than that of CI, suggesting that A-aDO₂ was a more important determinant of PvO₂ than CI (CI: β =0.418, A-aDO₂: β =-0.645; Table S5).

Treatment-induced Improvements in Hemodynamics/Oxygenation

We examined the post-treatment hemodynamic and oxygenation parameters at the most recent RHC (7.2±7.2 years after PAH diagnosis and treatment with selective pulmonary vasodilators; 2.7±4.0 years for the PEA/BPA group; and 4.8±4.5 years for patients with CTEPH who received PH medication). Only mPAP and PVR were significantly improved in the PAH and PH medication groups comprising patients with CTEPH. However, no improvements were observed in oxygenation parameters, including PvO₂ (Tables S6 and S7). Similar trends were observed in the IPAH/HPAH group (data not shown). In the PEA/BPA group comprising patients with CTEPH, all hemodynamic and oxygenation parameters, including PvO₂, were significantly improved (Table S7).

Prognostic Differences by Eras of Diagnosis in PAH and CTEPH.

Recently, survival in PAH has improved significantly as upfront combination therapy has become the mainstream treatment based on data from 2008–2013 [19], and riociguat for CTEPH became available after 2014. Hence, we analyzed 35 patients in the PAH treated group and 14 patients in the CTEPH PH medication group diagnosed after 2014. Survival was significantly poorer in patients with tissue hypoxia at diagnosis than in those without tissue hypoxia in PAH (P=.002), and PvO₂ significantly correlated with the prognosis in univariate analysis (P=.024). No statistical significance was seen due to the small events in multivariate analysis. No deaths were recorded among patients with CTEPH, and hence we could not perform any analyses.

DISCUSSION

This is a novel study to demonstrate that among the pulmonary hemodynamic parameters included in the 2015 ESC/ERS risk stratification criteria and French risk stratification criteria, lower PvO_2 (especially PvO_2 <35 mmHg associated with tissue hypoxia) was a significant prognostic factor in patients with PAH and CTEPH.

Lower PvO₂ was significantly associated with poor prognosis in patients with PAH and CTEPH independent of treatment with selective pulmonary vasodilators. However, no hemodynamic parameter (RAP, CI, and PvO₂) correlated with the prognosis in the PEA/BPA group (Table 7). In patients with PAH and CTEPH, pulmonary vasodilator treatment improved the mPAP and PVR, but not PaO₂ and PvO₂, whereas invasive treatment with PEA and BPA improved both PaO₂ and PvO₂. Selective pulmonary vasodilators inhibit vasoconstriction, thereby decreasing the PVR and mPAP; concurrently, these agents cause a worsening in ventilation-perfusion matching, resulting in decreased PaO₂ and maintenance of PvO₂ in PH due to respiratory diseases [20]. Contrarily, in PAH hypocapnia is reported to be a risk of mortality, and may reflect the extent of the pulmonary vascular disease, cardiac dysfunction, and impairment in oxygen delivery [21]. Then pulmonary vasodilators may adjust hyperventilation due to pulmonary vascular disease, resulting in increased PaCO₂. In our study, PaCO₂ increased without worsening of A-aDO₂ in patients with PAH and CTEPH who were treated by selective pulmonary vasodilators. Although 48% of PAH patients had worsening of A-aDO₂ after treatment, the remaining patients demonstrated improved A-aDO₂ with significant improvement in PVR compared to those with worsened A-aDO₂ (Δ PVR -3.3±4.1 Wood units in the improved A-aDO₂ group vs. -1.0±4.5 Wood units in the worsened A-aDO₂ group, P=.010) (data not shown). Thus, long-term effects of selective pulmonary vasodilators on ventilation-perfusion mismatch may not be significant

in PAH. However, PvO₂ remained a strong prognostic factor even in patients who received selective pulmonary vasodilators. It may be caused by a multi-factorial mechanism related to worsening of PaO₂ as well as change in PVR and cardiac output. Conversely, PEA and BPA treatment was more effective in improving hemodynamics, as well as PaO₂ and PvO₂. These data are consistent with those reported in previous studies by Tanabe et al. [22] and Isobe et al. [23] suggesting that baseline PvO₂ is unlikely to correlate with prognosis. In patients without tissue hypoxia, no significant differences in survival were observed between the PH medication and PEA/BPA groups, although patients with milder diseases were included in the PH medication group. First, as shown in Table S7, all hemodynamics at diagnosis indicate improvement predominantly after treatment. The prognosis of PEA is associated with perioperative death and residual PH in the long-term postoperative period [24,25]. In this study, although perioperative mortality was excluded, 51 patients were treated with selective pulmonary vasodilators due to residual PH, which might have influenced the results. Although 6MWD and DLCO, %pred. were associated with long-term survival in the univariate analysis, we were unable to build a good model in the multivariate analysis using these parameters and PvO₂. Furthermore, the perioperative mortality was 20% in patients with PVR >1200 dynes.s.cm⁻⁵; our multidisciplinary team discussed whether surgery should be avoided in cases where the PVR is >1200 dynes.s.cm⁻⁵ [26]. Moreover, the surgeon's technical ability may have influenced the results of the PEA and BPA,

suggesting that the levels of these hemodynamic factors at the time of diagnosis did not indicate their prognosis.

Thus, treatment with selective pulmonary vasodilators may be an option for patients with CTEPH without tissue hypoxia. Conversely, PEA or BPA is strongly recommended for patients with tissue hypoxia if there is an indication for PEA or BPA.

In this study, the univariate and multivariate Cox proportional hazards models revealed that PvO₂ more strongly correlated with prognosis than the other hemodynamic prognostic factors (RAP and CI) in patients with PAH and medically treated CTEPH diagnosed from 1983-2018. Recently survival in PAH has improved significantly due to upfront combination therapy becoming the mainstream treatment modality [19]. However, PvO₂ is still an important prognostic factor in univariate analysis. Surprisingly, PvO₂<35 mmHg was further validated as a prognostic factor in multivariate analyses adjusted by other parameters in the present study. This finding is consistent with that of Khirfan et al.'s study, which was based on ESC/ERS risk stratification and indicated that SvO₂ was more strongly correlated with prognosis than were thermodilution CI and other parameters in patients with IPAH/HPAH [16]. Tissue oxygenation can be explained using Krogh's tissue cylinder model [27] (described in Appendix S1), which forms the theoretical basis for understanding the exchange of oxygen and other solutes between the capillaries and tissues [28]. However, blood sampling at the capillary terminals (termed as the "lethal corner") is challenging, and tissue hypoxia can be deduced using the mixed venous blood oxygen partial pressure [29,30]. Based on the oxygen dissociation curve (described in Appendix S2 and Figure S4), SvO_2 may be normal in a state of alkalosis (e.g., with diuretic use), notwithstanding the presence of tissue hypoxia. Moreover, PvO_2 can be measured directly using a blood gas analysis. In contrast, SvO_2 cannot be measured directly using a Swan–Ganz catheter or blood gas analysis; however, it is derived by calculation, which may induce measurement errors. In the present study, logistic regression analyses demonstrated no significant differences between PvO_2 and SvO_2 in prognostic ability (data not shown). Thus, PvO_2 may be more suitable than SvO_2 for assessing tissue hypoxia.

Survival was significantly poorer in patients with tissue hypoxia at diagnosis than in those without tissue hypoxia in both groups regardless of treatment with selective pulmonary vasodilators. Several studies have conducted survival analyses based on the presence of tissue hypoxia in PH. A prospective study by Kawakami et al. first demonstrated the relative importance of PvO₂ compared with pulmonary hemodynamics for the prognosis of COPD [10]. PvO₂ was significantly poorer in non-survivors than in survivors; nonetheless, no significant differences were observed in pulmonary hemodynamics, including the mean PAP and CI, between the groups [10]. Higenbottam et al. reported that SvO₂, but not CI, was associated with survival in patients with PAH [31,32]. In the present study, we clarified, for the first time, using $PvO_2 < 35$ mmHg as a crucial threshold in patients with PH, that longterm survival was poor in patients with tissue hypoxia.

PvO₂ is defined by cardiac output, oxygen consumption, hemoglobin content, and PaO₂. In PAH, the decrease in PvO₂ may reflect a lower cardiac output and impaired gas exchange. Multiple regression analyses revealed that CI exerted a stronger effect on PvO₂ than A-aDO₂ (Table S4), suggesting that the cause of tissue hypoxia may be related to a lower CI. The decrease in PvO₂ in CTEPH may also reflect impaired gas exchange and lower cardiac output. However, multiple regression analyses revealed that A-aDO₂ exerted a greater effect on PvO₂ than did CI (Table S5), implying that the cause of tissue hypoxia may be associated with a mismatch in ventilation-perfusion. PAH is characterized by major homogeneous pulmonary vascular remodeling in the pulmonary arterioles (<0.5 mm in diameter), which may appear as normal or mottled patterns on perfusion scans [33]. However, in CTEPH, the location of the thrombus is heterogeneous on pulmonary perfusion scans. Moreover, hypoperfused areas due to thrombi and hyperperfused areas without thrombi are observed, which are indicative of pulmonary vascular remodeling, similar to PAH. Consequently, a mismatch in ventilation-perfusion may be more notable in CTEPH than in PAH.

PvO₂ in patients with PAH or CTEPH was not significantly improved by treatment with selective pulmonary vasodilators alone, suggesting that it remains a key prognostic factor even in the current era of multiple combination therapies. However, this finding was inconsistent with the findings of Boucly et al. and Sitbon et al., who suggested that vasodilator treatment improves the SvO₂ in PAH [7,34]. This may be explained by the follow-up timing after RHC. A subset of patients received RHC when they were not stabilized or had deteriorated. Particularly, elderly patients with PAH tended to have a smoking history with lower baseline PaO₂, even without obvious changes in the pulmonary parenchyma on computed tomography. In such cases, ventilation-perfusion mismatching deteriorated with the use of selective pulmonary vasodilators. This finding is consistent with Khirfan et al.'s [35] report describing that older age and a history of smoking are associated with hypoxemia at rest in patients with IPAH/HPAH.

A limitation of the present study is its retrospective design. Furthermore, biases may have occurred in the treatment decisions between the groups with/without tissue hypoxia and among the treatment groups. Additionally, we were unable to propose a model for predicting prognosis in combination with multiple parameters. Some cases with microscopic lung damage that could not be clearly identified as interstitial pneumonia or emphysema on computed tomography were included.

CONCLUSIONS

The present study revealed PvO₂ as a crucial prognostic factor in PH. The prognostic impact of tissue hypoxia affects different aspects of PAH and CTEPH, reflecting

their distinct pathogeneses. Therefore, PvO_2 can be considered a therapeutic target in patients with PH, warranting further investigation.

List of abbreviations:

A-aDO₂ = alveolar-arterial oxygen gradient; BNP = brain natriuretic peptide; BPA = balloon pulmonary angioplasty; CI = cardiac index; COPD = chronic obstructive pulmonary disease; CTD = connective tissue disease; CTEPH = chronic thromboembolic pulmonary hypertension; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; ERS = European Respiratory Society; ESC = European Society of Cardiology; HPAH = heritable pulmonary arterial hypertension; IPAH = idiopathic pulmonary arterial hypertension; mPAP = mean pulmonary arterial pressure; PAH = pulmonary arterial hypertension; PaCO₂ = arterial carbon dioxide tension; PaO₂ = arterial oxygen tension; PEA = pulmonary endarterectomy; PH = pulmonary hypertension; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right atrial pressure; RHC = right heart catheterization; SvO₂ = mixed venous oxygen saturation; WHO = World Health Organization; 6MWD = 6-min walk distance.

DECLARATIONS

Ethics Approval and Consent to Participate

This study was conducted in accordance with the tenets of the amended Declaration of Helsinki. Patient identity was concealed in this study, and data were compiled according to the requirements of the Japanese Ministry of Health, Labour and Welfare, which is dedicated to privacy, information technology, and civil rights. The research protocol for this study was approved by the Research Ethics Committee of the Chiba University School of Medicine (approval number: 2584); we had already performed "opt-out" by notifying or disclosing information. Written informed consent was obtained from all patients who were enrolled since 2009, when this requirement became mandatory (approval number: 826). In the case of patients who died before 2008, written informed consent was obtained from their next of kin when we examined prognosis in the relevant study (approval number: 84). The study database was anonymized, and all experiments were performed in accordance with the relevant guidelines and regulations.

Consent for Publication

Not applicable.

Availability of Data and Materials

The study database was anonymized, and the study complied with the requirements of the Japanese Ministry of Health, Labour and Welfare. The datasets generated during and/or

analyzed during the current study are not publicly available [due to them containing information that could compromise research participant privacy/consent]; however, they are available from the corresponding author on reasonable request.

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (Japan Society for the Promotion of Science [JSPS] KAKENHI Grant 19K17626) from the Japanese Ministry of Education and Science; The Uehara Memorial Foundation, Research Fellowship for Young Investigators 2019; and Japanese Ministry of Health, Labour and Welfare research grants specifically designated to the Respiratory Failure Research Group and Cardiovascular Diseases and the Pulmonary Hypertension Research Group from the Japan Agency for Medical Research and Development (No. 16ek0109127h0002). Editage (www.editage.com) contributed to the English-language editing of this manuscript.

References

- 1. Barnes H, Brown Z, Burns A, Williams T. Phosphodiesterase 5 inhibitors for pulmonary hypertension. Cochrane Database Syst Rev. 2019;1:CD012621.
- Frost A, Badesch D, Gibbs JSR, Gopalan D, Khanna D, Manes A, et al. Diagnosis of pulmonary hypertension. Eur Respir J 2019;53:1801904
- Parikh V, Bhardwaj A, Nair A. Pharmacotherapy for pulmonary arterial hypertension. J Thorac Dis. 2019;11:S1767–81.
- Galiè N, Channick RN, Frantz RP, Grünig E, Jing ZC, Moiseeva O, et al. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J. 2019;53:1801889.
- 5. Kim NH, Delcroix M, Jais X, Madani MM, Matsubara H, Mayer E, et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019;53:1801915.
- 6. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016;37:67-119.
- Boucly A, Weatherald J, Savale L, Jaïs X, Cottin V, Prevot G, et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J. 2017;50:1700889.
- Sandqvist A, Kylhammar D, Bartfay SE, Hesselstrand R, Hjalmarsson C, Kavianipour M, et al. Risk stratification in chronic thromboembolic pulmonary hypertension predicts survival. Scand Cardiovasc J. 2021;55:43-9.
- Hurdman J, Condliffe R, Elliot CA, Swift A, Rajaram S, Davies C, et al. Pulmonary hypertension in COPD: results from the Aspire registry. Eur Respir J. 2013;41:1292-301.
- Kawakami Y, Kishi F, Yamamoto H, Miyamoto K. Relation of oxygen delivery, mixed venous oxygenation, and pulmonary hemodynamics to prognosis in chronic obstructive pulmonary disease. N Engl J Med. 1983;308:1045-9.

- 11. Mithoefer JC, Holford FD, Keighley JF. The effect of oxygen administration on mixed venous oxygenation in chronic obstructive pulmonary disease. Chest. 1974;66:122-32.
- Mithoefer JC, Ramirez C, Cook W. The effect of mixed venous oxygenation on arterial blood in chronic obstructive pulmonary disease: the basis for a classification. Am Rev Respir Dis. 1978;117:259-64.
- Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med. 2011;184:514-20.
- 14. Radwan L, Daum S. Evaluation of mixed venous oxygenation on the basis of arterial oxygen tension in chronic lung diseases. Respiration. 1980;40:194-200.
- 15. Suda R, Tanabe N, Terada J, Naito A, Kasai H, Nishimura R, et al. Pulmonary hypertension with a low cardiac index requires a higher PaO₂ level to avoid tissue hypoxia. Respirology. 2020;25:97-103.
- 16. Khirfan G, Almoushref A, Naal T, Abuhalimeh B, Dweik RA, Heresi GA, et al. Mixed venous oxygen saturation is a better prognosticator than cardiac index in pulmonary arterial hypertension. Chest. 2020;158:2546-55.
- 17. Kapitan KS, Clausen JL, Moser KM. Gas exchange in chronic thromboembolism after pulmonary thromboendarterectomy. Chest. 1990;98:14-9.
- Hoeper MM, Huscher D, Ghofrani HA, Delcroix M, Distler O, Schweiger C, et al. Elderly patients diagnosed with idiopathic pulmonary arterial hypertension: results from the COMPERA registry. Int J Cardiol. 2013;168:871-80.
- 19. Tamura Y, Kumamaru H, Satoh T, Miyata H, Ogawa A, Tanabe N, et al. Effectiveness and outcome of pulmonary arterial hypertension-specific therapy in Japanese patients with pulmonary arterial hypertension. Circ J. 2017;82:275-82.
- 20. Ghofrani HA, Grimminger F. Soluble guanylate cyclase stimulation: an emerging option in pulmonary hypertension therapy. Eur Respir Rev. 2009;18:35-41.
- 21. Hoeper MM, Pletz MW, Golpon H, Welte T. Prognostic value of blood gas analyses in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2007;29:944-50.
- 22. Tanabe N, Okada O, Nakagawa Y, Masuda M, Kato K, Nakajima N, et al. The efficacy of pulmonary thromboendarterectomy on long-term gas exchange. Eur Respir J. 1997;10:2066-72.
- 23. Isobe S, Itabashi Y, Kawakami T, Kataoka M, Kohsaka S, Tsugu T, et al. Increasing mixed venous oxygen saturation is a predictor of improved renal function after balloon

pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Heart Vessels. 2019;34:688-97.

- 24. Jenkins DP, Madani M, Mayer E, Kerr K, Kim N, Klepetko W, et al. Surgical treatment of chronic thromboembolic pulmonary hypertension. Eur Respir J. 2013;41:735-42.
- 25. Ishida K, Masuda M, Tanabe N, Matsumiya G, Tatsumi K, Nakajima N. Long-term outcome after pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension. J Thorac Cardiovasc Surg. 2012;144:321-6.
- 26. Mayer E, Jenkins D, Lindner J, D'Armini A, Kloek J, Meyns B, et al. Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg. 2011;141:702-10.
- 27. Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol. 1919;52:409-15.
- 28. Tenney SM. A theoretical analysis of the relationship between venous blood and mean tissue oxygen pressures. Respir Physiol. 1974;20:283-96.
- 29. Plötz FB, van Lingen RA, Bos AP. Venous oxygen measurements in the inferior vena cava in neonates with respiratory failure. Crit Care. 1998;2:57-60.
- Miyamoto K, Kawakami Y. Pathophysiology of tissue hypoxia. Kokyu To Junkan Respir Circ. 1994;42:437-44 (in Japanese).
- Higenbottam T, Butt AY, McMahon A, Westerbeck R, Sharples L. Long-term intravenous prostaglandin (epoprostenol or iloprost) for treatment of severe pulmonary hypertension. Heart. 1998;80:151-5.
- 32. Higenbottam TW, Spiegelhalter D, Scott JP, Fuster V, Dinh-Xuan AT, Caine N, et al. Prostacyclin (epoprostenol) and heart-lung transplantation as treatments for severe pulmonary hypertension. Br Heart J. 1993;70:366-70.
- Fukuda K, Date H, Doi S, Fukumoto Y, Fukushima N, Hatano M, et al. Guidelines for the treatment of pulmonary hypertension (JCS 2017/JPCPHS 2017). Circ J. 2019;83:842-945.
- Sitbon O, Cottin V, Canuet M, Clerson P, Gressin V, Perchenet L, et al. Initial combination therapy of macitentan and tadalafil in pulmonary arterial hypertension. Eur Respir J. 2020;56:2000673.

35. Khirfan G, Naal T, Abuhalimeh B, Newman J, Heresi GA, Dweik RA, et al. Hypoxemia in patients with idiopathic or heritable pulmonary arterial hypertension. PLOS ONE. 2018;13:e0191869.

X7 ' 11	PvC	D_2	D	
variable	≥35 mmHg	<35 mmHg	P	
N	85	53		
Age (years)	48.0±17.5	53.6±14.6	.066	
Sex (F/M)	70/15	43/10	.856	
RAP (mmHg)	4.6±3.7	6.8±4.7	.005	
mPAP (mmHg)	42.0±10.8	51.8±14.1	<.001	
CI (L/min/m ²)	3.1±0.7	2.2±0.6	<.001	
PVR (W.U)	7.8±3.5	14.4±7.7	<.001	
PaO ₂ (mmHg)	77.2±11.6	62.5±12.1	<.001	
PvO ₂ (mmHg)	39.0±2.8	31.0±2.6	<.001	
SvO ₂ (mmHg)	72.0±5.2	58.5±7.1	<.001	
A-aDO ₂ (mmHg)	26.9±11.9	43.4±13.1	<.001	
BNP (pg/mL)	128.0±235.5	460.0±523.0	<.001	
6MWD (m)	395.6±106.3	$306.8{\pm}100.0$	<.001	
FVC, %pred. (%)	87.2±16.8	81.4±22.5	.140	
DLCO, %pred. (%)	61.8±20.1	50.9±22.9	.011	
WHO functional class I / II / III / IV	6/44/34/1	0/16/29/8	<.001	
Medical treatment	63 (74.1%)	41 (77.4%)	.667	
Combination pulmonary vasodilators, n (%)	36 (42.4%)	21 (39.6%)	.751	
ERA, n (%)	44 (51.8%)	23 (43.4%)	.339	
PDE5-I, n (%)	38 (44.7%)	23 (43.4%)	.880	
Prostacyclin, n (%)	38 (44.7%)	29 (54.7%)	.252	
sGCS, n (%)	5 (5.9%)	2 (3.8%)	.583	

TABLE 1. Characteristics of patients with PAH stratified by PvO2 of 35 mmHg

Data are presented as mean \pm standard deviation or numbers. A-aDO₂ = alveolar-arterial oxygen gradient; BNP = brain natriuretic peptide; CI = cardiac index; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; ERA = endothelin receptor antagonists; FVC, %pred. = percent predicted forced vital capacity; mPAP = mean pulmonary arterial pressure; PAH = pulmonary arterial hypertension; PaO₂ = arterial oxygen tension; PDE5-I = phosphodiesterase type 5 inhibitors; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; sGCS = soluble guanylate cyclase stimulator; SvO₂ = mixed venous oxygen saturation; WHO = World Health Organization; W.U = Wood units; 6MWD = 6-min walk distance.

	D		
Variable	PV	02	Р
, and oto	≥35 mmHg	<35 mmHg	1
Ν	84	184	
Age (years)	55.6±14.7	58.2±12.1	.297
Sex (F/M)	57/27	138/46	.223
RAP (mmHg)	3.3±2.6	6.3±4.1	<.001
mPAP (mmHg)	37.3±8.8	47.1±10.3	<.001
CI (L/min/m ²)	3.0±0.6	2.4±0.6	<.001
PVR (W.U)	6.6±2.8	10.9±4.2	<.001
PaO ₂ (mmHg)	66.2±9.5	55.0±8.0	<.001
PvO ₂ (mmHg)	37.6±2.4	31.1±2.7	<.001
SvO ₂ (mmHg)	70.1±4.0	58.9±6.0	<.001
A-aDO ₂ (mmHg)	36.0±11.0	49.2±8.7	<.001
BNP (pg/mL)	69.2±109.3	285.0±329.2	<.001
6MWD (m)	409.6±99.9	340.3±92.2	<.001
FVC, %pred. (%)	97.9±20.4	93.1±18.0	.031
DLCO, %pred. (%)	79.1±18.8	73.3±21.1	.021
WHO functional class I / II / III / IV	4/45/33/2	1/49/121/13	<.001
PEA/BPA, n (%)	49 (58.3%)	128 (69.6%)	
PH medication, n (%)	20 (23.8%)	46 (25.0%)	.005*
Supportive, n (%)	15 (17.9%)	10 (5.4%)	

TABLE 2. Characteristics of patients with CTEPH stratified by PvO₂ of 35 mmHg

Data are presented as mean \pm standard deviation or numbers. A-aDO₂ = alveolar-arterial oxygen gradient; BNP = brain natriuretic peptide; BPA = balloon pulmonary angioplasty; CI = cardiac index; CTEPH = chronic thromboembolic pulmonary hypertension; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; FVC, %pred. = percent predicted forced vital capacity; mPAP = mean pulmonary arterial pressure; PaO₂ = arterial oxygen tension; PEA = pulmonary endarterectomy; PH = pulmonary hypertension; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; SvO₂ = mixed venous oxygen saturation; WHO = World Health Organization; W.U = Wood units; 6MWD = 6-min walk distance.

*There was a significant difference in treatment between the two groups.

Variable	Univariate		Multivariate Model 1		Multivariate Model 2	
	HR (95% CIv)	Р	HR (95% CIv)	Р	HR (95% CIv)	Р
Age (years)	1.03 (1.012-1.047)	<.001	1.04 (1.018-1.057)	<.001	1.03 (1.012-1.050)	<.001
RAP (mmHg)	0.99 (0.928-1.058)	.822	0.95 (0.877-1.015)	.124		
mPAP (mmHg)	1.03 (1.008-1.048)	.008				
CI (L/min/m ²)	0.23 (0.142-0.367)	<.001	0.42 (0.244-0.706)	<.001		
PVR (W.U)	1.15 (1.110-1.196)	<.001				
PaO ₂ (mmHg)	0.98 (0.958-0.997)	.026				
PvO ₂ (mmHg)	0.87 (0.816-0.918)	<.001	0.86 (0.784-0.931)	<.001		
PvO ₂ <35 mmHg	2.86 (1.719-4.774)	<.001			3.13 (1.707-5.735)	<.001
RAP ≥8 mmHg	0.60 (0.312-1.156)	.108			0.58 (0.288-1.178)	.132
$CI < 2.5 L/min/m^2$	3.65 (2.151-6.183)	<.001			2.87 (1.599-5.146)	<.001
SvO ₂ (mmHg)	0.94 (0.918-0.964)	<.001				
A-aDO ₂ (mmHg)	1.03 (1.013-1.052)	.001				
BNP (pg/mL)	1.00 (1.001-1.002)	<.001				
6MWD (m)	0.99 (0.990-0.997)	.001				
FVC, %pred. (%)	0.99 (0.970-1.003)	.111				
DLCO, %pred. (%)	0.98 (0.964-0.996)	.017				
WHO functional class						
I + II (vs. $III + IV$)	0.31 (0.176-0.534)	<.001				
Medication	0.33 (0.196-0.543)	<.001	0.15 (0.084-0.285)	<.001	0.18 (0.100-0.321)	<.001

TABLE 3. Univariate and multivariate analyses of prognostic factors for patients with PAH (N =138)

A-aDO₂ = alveolar-arterial oxygen gradient; BNP = brain natriuretic peptide; CI = cardiac index; CIv = confidence interval; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; FVC, %pred. = percent predicted forced vital capacity; HR = hazard ratio; mPAP = mean pulmonary arterial pressure; PAH = pulmonary arterial hypertension; PaO₂ = arterial oxygen tension; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; SvO₂ = mixed venous oxygen saturation; WHO = World Health Organization; W.U = Wood units; 6MWD = 6-min walk distance.

Model 1: Multivariate analysis by ESC/ERS risk stratification, medication and age.

Model 2: Multivariate analysis by ESC/ERS and French risk stratification in yellow and red zone, medication and age.

Variable	Univariate		Multivariate Model 1		Multivariate Model 2	
	HR (95% CIv)	Р	HR (95% CIv)	Р	HR (95% CIv)	Р
Age (years)	1.05 (1.029-1.084)	<.001	1.06 (1.029-1.090)	<.001	1.05 (1.021-1.078)	<.001
RAP (mmHg)	1.00 (0.918-1.082)	.990	0.94 (0.856-1.017)	.120		
mPAP (mmHg)	1.02 (0.987-1.048)	.270				
CI (L/min/m ²)	0.23 (0.110-0.440)	<.001	0.42 (0.170-0.949)	.037		
PVR (W.U)	1.15 (1.078-1.220)	<.001				
PaO ₂ (mmHg)	0.96 (0.930-0.985)	.002				
PvO ₂ (mmHg)	0.84 (0.776-0.914)	<.001	0.84 (0.740-0.937)	.002		
PvO ₂ <35 mmHg	2.89 (1.466-5.684)	.002			2.36 (1.173-4.736)	.015
RAP ≥8 mmHg	0.59 (0.257-1.349)	.188			0.55 (0.225-1.371)	.185
$CI < 2.5 L/min/m^2$	3.25 (1.633-6.453)	<.001			2.60 (1.278-5.276)	.007
SvO ₂ (mmHg)	0.93 (0.908-0.966)	<.001				
A-aDO ₂ (mmHg)	1.04 (1.016-1.068)	.001				
BNP (pg/mL)	1.00 (1.001-1.002)	<.001				
6MWD (m)	0.99 (0.990-0.998)	.002				
FVC, %pred. (%)	0.98 (0.965-1.003)	.105				
DLCO, %pred. (%)	0.99 (0.969-1.007)	.211				
WHO functional class						
I + II (vs. $III + IV$)	0.39 (0.195-0.772)	.006				

TABLE 4. Univariate and multivariate analyses of prognostic factors for patients with PAH with pulmonary vasodilator treatment

A-aDO₂ = alveolar-arterial oxygen gradient; BNP = brain natriuretic peptide; CI = cardiac index; CIv = confidence interval; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; FVC, %pred. = percent predicted forced vital capacity; HR = hazard ratio; mPAP = mean pulmonary arterial pressure; PAH = pulmonary arterial hypertension; PaO₂ = arterial oxygen tension; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; SvO₂ = mixed venous oxygen saturation; WHO = World Health Organization; W.U = Wood units; 6MWD = 6-min walk distance.

Model 1: Multivariate analysis by ESC/ERS risk stratification and age.

Model 2: Multivariate analysis by ESC/ERS and French risk stratification in yellow and red zone, and age.

Variable	Univariate		Multivariate Model 1		Multivariate Model 2	
	HR (95% CIv)	Р	HR (95% CIv)	Р	HR (95% CIv)	Р
Age (years)	1.02 (0.993-1.044)	.155	1.02 (0.987-1.045)	.279	1.02 (0.987-1.046)	.272
RAP (mmHg)	1.06 (0.924-1.220)	.416	0.95 (0.797-1.195)	.533		
mPAP (mmHg)	1.03 (1.001-1.050)	.041				
CI (L/min/m ²)	0.31 (0.170-0.531)	<.001	0.56 (0.255-1.144)	.112		
PVR (W.U)	1.12 (1.066-1.187)	<.001				
PaO ₂ (mmHg)	0.98 (0.946-1.010)	.170				
PvO ₂ (mmHg)	0.77 (0.690-0.854)	<.001	0.82 (0.700-0.937)	.003		
PvO ₂ <35 mmHg	11.94 (4.007-35.554)	<.001			6.45 (1.626-25.568)	.003
RAP ≥8 mmHg	0.98 (0.333-2.891)	.972			0.84 (0.263-2.658)	.759
CI <2.5 L/min/m ²	6.18 (2.551-14.950)	<.001			2.57 (0.771-8.548)	.135
SvO ₂ (mmHg)	0.86 (0.812-0.916)	<.001				
A-aDO ₂ (mmHg)	1.05 (1.012-1.085)	.009				
BNP (pg/mL)	1.00 (0.992-1.007)	.903				
6MWD (m)	0.99 (0.952-1.009)	.105				
FVC, %pred. (%)	0.99 (0.965-1.026)	.719				
DLCO, %pred. (%)	0.96 (0.917-0.991)	.011				
WHO functional class						
I + II (vs. III + IV)	0.16 (0.047-0.572)	<.001			~	

TABLE 5. Univariate and multivariate analyses of prognostic factors for patients with PAH without pulmonary vasodilator treatment

A-aDO₂ = alveolar-arterial oxygen gradient; BNP = brain natriuretic peptide; CI = cardiac index; CIv = confidence interval; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; FVC, %pred. = percent predicted forced vital capacity; HR = hazard ratio; mPAP = mean pulmonary arterial pressure; PAH = pulmonary arterial hypertension; PaO₂ = arterial oxygen tension; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; SvO₂ = mixed venous oxygen saturation; WHO = World Health Organization; W.U = Wood units; 6MWD = 6-min walk distance. Model 1: Multivariate analysis by ESC/ERS risk stratification and age.

Model 2: Multivariate analysis by ESC/ERS and French risk stratification in yellow and red zone, and age.

Variable	Univariate		Multivariate Model 1		Multivariate Model 2	
	HR (95% CIv)	Р	HR (95% CIv)	Р	HR (95% CIv)	Р
Age (years)	1.02 (0.995-1.041)	.139	1.01 (0.987-1.032)	.439	1.01 (0.986-1.030)	.461
RAP (mmHg)	1.07 (1.009-1.137)	.026	1.03 (0.952-1.117)	.425		
mPAP (mmHg)	1.02 (0.994-1.043)	.136				
CI (L/min/m ²)	0.66 (0.426-0.996)	.048	0.84 (0.521-1.353)	.479		
PVR (W.U)	1.11 (1.052-1.178)	<.001				
PaO ₂ (mmHg)	0.98 (0.955-1.011)	.241				
PvO ₂ (mmHg)	0.91 (0.848-0.976)	.008	0.89 (0.815-0.969)	.007		
PvO ₂ <35 mmHg	1.59 (0.873-2.913)	.115			2.46 (1.140-5.307)	.019
RAP ≥8 mmHg	2.13 (1.221-3.710)	.011			1.69 (0.872-3.261)	.126
CI <2.5 L/min/m ²	1.58 (0.944-2.639)	.080			1.01 (0.554-1.855)	.966
SvO ₂ (mmHg)	0.94 (0.909-0.977)	.001				
A-aDO ₂ (mmHg)	1.01 (0.986-1.035)	.418				
BNP (pg/mL)	1.00 (1.000-1.001)	.056				
6MWD (m)	0.99 (0.990-0.996)	<.001				
FVC, %pred. (%)	0.99 (0.969-0.996)	.011				
DLCO, %pred. (%)	0.99 (0.977-1.003)	.124				
WHO functional class						
I + II (vs. $III + IV$)	0.41 (0.206-0.808)	.005				
Treatment						
PEA/BPA	0.20 (0.107.0.267)	< 0.01	0 10 (0 000 0 254)	< 001	0.20 (0.109.0.295)	< 001
(vs. PH medication) PEA/BPA	0.20 (0.107-0.367)	<.001	0.19 (0.099-0.354)	<.001	0.20 (0.108-0.385)	<.001
(vs. Supportive)	0.14 (0.072-0.283)	<.001	0.09 (0.045-0.187)	<.001	0.10 (0.044-0.206)	<.001
PH medication						
(vs. Supportive)	0.72 (0.376-1.377)	.320	0.49 (0.249-0.959)	.038	0.47 (0.225-0.961)	.039

TABLE 6. Univariate and multivariate analyses of prognostic factors for patients with CTEPH (N =277)

A-aDO₂ = alveolar-arterial oxygen gradient; BNP = brain natriuretic peptide; BPA = balloon pulmonary angioplasty; CI = cardiac index; CIv = confidence interval; CTEPH = chronic thromboembolic pulmonary hypertension; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; FVC, %pred. = percent predicted forced vital capacity; HR = hazard ratio; mPAP = mean pulmonary arterial pressure; PaO₂ = arterial oxygen tension; PEA = pulmonary endarterectomy; PH = pulmonary hypertension; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; SvO₂ = mixed venous oxygen saturation; WHO = World Health Organization; W.U = Wood units; 6MWD = 6-min walk distance.

Model 1: Multivariate analysis by ESC/ERS risk stratification, treatment and age.

Model 2: Multivariate analysis by ESC/ERS and French risk stratification in yellow and red zone, treatment and age.

Variable	Univariate		Multivariate Model 1		Multivariate Model 2		Multivariate Model 3	
	HR (95% CIv)	Р	HR (95% CIv)	Р	HR (95% CIv)	Р	HR (95% CIv)	Р
Age (years)	1.04 (0.991-1.085)	.120	1.05 (1.001-1.097)	.044	1.04 (0.991-1.087)	.120	1.06 (0.999-1.139)	.053
RAP (mmHg)	1.05 (0.929-1.158)	.432	1.10 (0.967-1.261)	.209				
mPAP (mmHg)	1.03 (0.987-1.083)	.153						
CI (L/min/m ²)	0.75 (0.334-1.560)	.455	0.70 (0.272-1.587)	.413				
PVR (W.U)	1.08 (0.958-1.198)	.209						
PaO ₂ (mmHg)	1.00 (0.954-1.054)	.873						
PvO ₂ (mmHg)	1.05 (0.928-1.197)	.419	1.15 (0.989-1.352)	.069			1.02 (0.831-1.267)	.851
PvO ₂ <35 mmHg	1.54 (0.507-4.659)	.430			1.22 (0.368-4.039)	.742		
RAP ≥8 mmHg	1.38 (0.447-4.229)	.589			1.51 (0.438-5.215)	.523		
CI <2.5 L/min/m ²	1.26 (0.515-3.064)	.616			1.07 (0.389-2.923)	.901		
SvO ₂ (mmHg)	0.99 (0.925-1.058)	.730						
A-aDO ₂ (mmHg)	0.97 (0.932-1.018)	.241						
BNP (pg/mL)	1.00 (0.998-1.002)	.603						
6MWD (m)	0.99 (0.988-0.999)	.030					0.99 (0.988-1.001)	.098
FVC, %pred. (%)	0.96 (0.957-1.006)	.123						
DLCO, %pred. (%)	0.98 (0.952-0.998)	.033					0.98 (0.951-1.014)	.279
WHO functional class								
I + II (vs. $III + IV$)	0.31 (0.070-1.332)	.067						

TABLE 7. Univariate and multivariate analyses of prognostic factors for patients in the CTEPH PEA/BPA group

A-aDO₂ = alveolar-arterial oxygen gradient; BNP = brain natriuretic peptide; BPA = balloon pulmonary angioplasty; CI = cardiac index; CIv = confidence interval; CTEPH = chronic thromboembolic pulmonary hypertension; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; FVC, %pred. = percent predicted forced vital capacity; HR = hazard ratio; mPAP = mean pulmonary arterial pressure; PaO₂ = arterial oxygen tension; PEA = pulmonary endarterectomy; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; SvO₂ = mixed venous oxygen saturation; WHO = World Health Organization; W.U = Wood units; 6MWD = 6-min walk distance.

Model 1: Multivariate analysis by ESC/ERS risk stratification and age.

Model 2: Multivariate analysis by ESC/ERS and French risk stratification in yellow and red zone, and age.

Model 3: Multivariate analysis adding age and PvO_2 to variables that were significant in univariate analysis.

Variable	Univariate		Multivariate Model 1		Multivariate Model 2		Multivariate Model 3	
	HR (95% CIv)	Р	HR (95% CIv)	Р	HR (95% CIv)	Р	HR (95% CIv)	Р
Age (years)	0.99 (0.959-1.020)	.427	0.99 (0.951-1.025)	.479	0.99 (0.966-1.027)	.701	0.99 (0.955-1.033)	.730
RAP (mmHg)	1.13 (1.034-1.237)	.008	1.00 (0.864-1.127)	.958			0.99 (0.861-1.119)	.889
mPAP (mmHg)	1.05 (1.013-1.085)	.008					0.99 (0.923-1.054)	.688
CI (L/min/m ²)	0.59 (0.352-1.034)	.064	1.26 (0.569-2.983)	.575				
PVR (W.U)	1.17 (1.081-1.264)	<.001					1.06 (0.895-1.250)	.499
PaO ₂ (mmHg)	0.95 (0.904-0.994)	.025						
PvO ₂ (mmHg)	0.74 (0.651-0.842)	<.001	0.73 (0.625-1.367)	<.001			0.77 (0.633-0.930)	.006
PvO ₂ <35 mmHg	4.83 (1.133-20.608)	.008			4.26 (0.871-20.820)	.047		
RAP ≥8 mmHg	2.80 (1.226-6.418)	.019			2.08 (0.786-5.490)	.142		
CI <2.5 L/min/m ²	2.11 (0.931-4.782)	.067			0.88 (0.317-2.416)	.798		
SvO ₂ (mmHg)	0.87 (0.816-0.924)	<.001						
A-aDO ₂ (mmHg)	1.07 (1.025-1.111)	.002						
BNP (pg/mL)	1.00 (1.001-1.004)	.002						
6MWD (m)	0.99 (0.984-0.994)	<.001						
FVC, %pred. (%)	0.99 (0.971-1.004)	.112						
DLCO, %pred. (%)	0.99 (0.977-1.011)	.492						
WHO functional class								
I + II (vs. $III + IV$)	0.22 (0.053-0.968)	.014						

TABLE 8. Univariate and multivariate analyses of prognostic factors for patients in the CTEPH PH medication group

A-aDO₂ = alveolar-arterial oxygen gradient; BNP = brain natriuretic peptide; CI = cardiac index; CIv = confidence interval; CTEPH = chronic thromboembolic pulmonary hypertension; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; FVC, %pred. = percent predicted forced vital capacity; HR = hazard ratio; mPAP = mean pulmonary arterial pressure; PaO₂ = arterial oxygen tension; PH = pulmonary hypertension; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; SvO₂ = mixed venous oxygen saturation; WHO = World Health Organization; W.U = Wood units; 6MWD = 6-min walk distance. Model 1: Multivariate analysis by ESC/ERS risk stratification and age.

Model 2: Multivariate analysis by ESC/ERS and French risk stratification in yellow and red zone, and age.

Model 3: Multivariate analysis adding age and PvO₂ to variables that were significant in univariate analysis.

Figure

Figure 1: Kaplan-Meier survival curves stratified by the presence of tissue hypoxia (PvO2

< 35 mmHg) in patients with PAH

(A) Group treated with selective pulmonary vasodilators (P=.001). (B) Untreated group

(P<.001). PAH = pulmonary arterial hypertension; PvO₂ = mixed venous oxygen tension.

Figure 2: (A, B) Kaplan–Meier survival curves stratified by the presence of tissue hypoxia

(PvO₂ <35 mmHg) in patients with CTEPH

(A) PEA/BPA group (P=.445). (B) PH medication group (P=.017). (C) Comparison among the PEA/BPA, PH medication, and supportive groups in the absence of tissue hypoxia (P=.002). There is no significant difference in survival between the PEA/BPA

and PH medication groups (P=.366). (D) Comparison among the three groups in the presence of tissue hypoxia (P<.001). The PEA/BPA group exhibits better survival than the PH medication group (P<.001). BPA = balloon pulmonary angioplasty; CTEPH = chronic thromboembolic pulmonary hypertension; PEA = pulmonary endarterectomy; PH = pulmonary hypertension; PvO₂ = mixed venous oxygen tension.

Supplemental Material

Appendix S1: Krogh's Tissue Cylinder Model

Oxygen supply to the peripheral tissues depends on the partial pressure of oxygen in the tissue capillaries. Oxygen is transferred from the cell surface to intracellular mitochondria by diffusion. During the capillary flow from the arteries to the veins, oxygen is transported from the capillary surface to tissue end components by diffusion due to the pressure gradient. Furthermore, oxygen is utilized by tissues en route to being transported from the capillary surface to tissue end components. Subsequently, the partial pressure of oxygen in the tissue exponentially decreases toward the end of the tissue. Moreover, the capillary oxygen content decreases linearly, resulting in a gradual decrease in the partial pressure of oxygen. The tissue supplied by the terminal capillaries has the lowest partial pressure of oxygen, and is therefore vulnerable to hypoxia; accordingly, it is termed the "lethal corner." Therefore, a decrease in the partial pressure of oxygen at the end of the capillaries below a certain level will hinder the oxygen supply to the tissues in the lethal corner (critical PvO₂). The partial pressure of oxygen in the venous blood at the end of the capillaries is indicative of the oxygen supply status of the tissue. However, blood sampling at lethal corners is challenging, and tissue hypoxia can be deduced using the mixed venous blood oxygen partial pressure.¹⁻³

Appendix S2: Hemoglobin Oxygen Dissociation Curve

The relationship between mixed venous oxygen saturation (SvO_2) and PvO_2 can be explained by the hemoglobin oxygen dissociation curve (Figure S4). The oxygen dissociation curve depicts the oxygen saturation (SO_2) bound to hemoglobin and the partial pressure of oxygen (PO₂) on the vertical and horizontal axes, respectively. Hemoglobin binds tightly to oxygen at high oxygen partial pressures and is rapidly released at low oxygen partial pressures in peripheral tissues.

From the steady state, the dissociation curve shifts to the right with a decrease in pH and/or an increase in the metabolism, body temperature, partial pressure of carbon dioxide, and/or 2,3-bisphosphoglycerate (2,3-DPG) levels (e.g., in pulmonary diseases). Conversely, it shifts to the left with an increase in pH and/or a decrease in the metabolism, body temperature, partial pressure of carbon dioxide, and 2,3-DPG levels (e.g., in pulmonary embolism, ventilation-perfusion ratio mismatch, and diuretic use). Therefore, even if SvO₂ is normal, tissue hypoxia may be present.

 PvO_2 can be measured directly using a blood gas analysis. In contrast, SvO_2 cannot be measured directly using a Swan–Ganz catheter or blood gas analysis; however, it is derived by calculation, which may induce measurement errors. Thus, we hypothesized that PvO_2 may represent a key factor in the identification of tissue hypoxia.

References

1. Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol. 1919;52:409-15.

2. Plötz FB, van Lingen RA, Bos AP. Venous oxygen measurements in the inferior vena cava in neonates with respiratory failure. Crit Care. 1998;2:57-60.

3. Miyamoto K, Kawakami Y. Pathophysiology of tissue hypoxia. Kokyu To Junkan (Respiration and Circulation). 1994;42:437-44 (in Japanese).

Table SI. Classification of the enrolled patients w	ith pulmonary arterial hypertension
Classification	Ν
Idiopathic	56
Hereditary	5
Drug- and toxin-induced	1
Associated	
Connective tissue disease	56
HIV infection	1
Portal hypertension	15
Congenital heart disease	4
Total	138

Table S1. Classification of the enrolled patients with pulmonary arterial hypertension

Total138HIV = human immunodeficiency virus. Classification of congenital heart disease in four patients;
four patients had residual pulmonary hypertension despite interventional or surgical occlusion for
atrial septal defect.

Variable	Treated	Untreated	Р
Ν	104	34	
Age (years)	51.9±16.6	44.8±15.7	.003
Sex (F/M)	82/22	31/3	.105
RAP (mmHg)	5.8±4.6	4.6±2.8	.404
mPAP (mmHg)	44.7±11.7	49.0±16.2	.331
CI (L/min/m ²)	2.8 ± 0.7	2.6±1.0	.456
PVR (W.U)	9.6±5.3	12.7±8.3	.142
PaO ₂ (mmHg)	70.2±13.6	75.8±13.5	.048
PvO ₂ (mmHg)	35.7±4.6	36.7±5.3	.288
SvO ₂ (mmHg)	66.3±8.9	68.4±8.7	.162
A-aDO ₂ (mmHg)	34.8±14.6	29.1±14.5	.042
BNP (pg/mL)	255.6±406.1	103.6±138.6	.190
6MWD (m)	367.7±114.3	373.7±76.6	.977
FVC, %pred. (%)	84.6±19.3	88.2±17.2	.584
DLCO, %pred. (%)	59.2±20.9	55.0±25.3	.478
WHO functional class I/II/III/IV	6/51/42/5	0/9/21/4	.024
Combination pulmonary vasodilators, n (%)	57 (54.8%)		
ERA, n (%)	67 (64.4%)		
PDE5-I, n (%)	61 (58.7%)		
Prostacyclin, n (%)	67 (64.4%)		
sGCS, n (%)	7 (6.7%)		

Table S2. Characteristics of patients with PAH stratified by treatment with selective pulmonary vasodilators

Data are presented as mean \pm standard deviation or numbers. A-aDO₂ = alveolar-arterial oxygen gradient; BNP = brain natriuretic peptide; CI = cardiac index; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; ERA = endothelin receptor antagonists; FVC, %pred. = percent predicted forced vital capacity; mPAP = mean pulmonary arterial pressure; PAH = pulmonary arterial hypertension; PaO₂ = arterial oxygen tension; PDE5-I = phosphodiesterase type 5 inhibitors; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; sGCS = soluble guanylate cyclase stimulator; SvO₂ = mixed venous oxygen saturation; WHO = World Health Organization; W.U = Wood units; 6MWD = 6-min walk distance.

Variable	PEA/BPA	PH medication	Supportive	P^{a}	P^{b}
Ν	177	66	25		
Age (years)	56.1±12.3	61.7±13.1	55.0±15.3	.003	<.001
Sex (F/M)	125/52	55/11	15/10	.045	.044
RAP (mmHg)	5.5±3.9	5.3±4.2	4.7±4.2	.528	.514
mPAP (mmHg)	46.0±9.9	$40.4{\pm}10.8$	40.2±13.9	<.001	<.001
CI (L/min/m ²)	2.6±0.6	2.7±0.7	2.7±0.7	.575	.316
PVR (W.U)	9.9±3.8	8.9±4.7	8.9±6.5	.013	.052
PaO ₂ (mmHg)	58.3±9.3	58.0±10.1	61.1±13.8	.698	.709
PvO ₂ (mmHg)	33.0±3.5	33.3±4.5	34.0±5.7	.129	.707
SvO ₂ (mmHg)	62.1±7.0	62.6±7.4	64.8±10.7	.041	.586
A-aDO ₂ (mmHg)	46.0±9.8	44.0±12.1	41.4±16.9	.146	.172
BNP (pg/mL)	234.6±313.7	208.4±272.6	150.3±257.1	.023	.091
6MWD (m)	364.8±95.4	346.4±115.1	381.8±63.5	.529	.299
FVC, %pred. (%)	94.1±17.4	96.3±22.9	93.1±17.0	.283	.126
DLCO, %pred. (%)	74.5±19.6	75.2±22.3	79.0±23.6	.723	.091
WHO functional class I/II/III/IV	3/62/103/9	0/20/45/1	2/12/6/5	<.001	.284

Table S3. Characteristics of patients with CTEPH stratified by treatment modality

Data are presented as mean \pm standard deviation or numbers. A-aDO₂ = alveolar-arterial oxygen gradient; BNP = brain natriuretic peptide; BPA = balloon pulmonary angioplasty; CI = cardiac index; CTEPH = chronic thromboembolic pulmonary hypertension; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; FVC, %pred. = percent predicted forced vital capacity; mPAP = mean pulmonary arterial pressure; PaO₂ = arterial oxygen tension; PEA = pulmonary endarterectomy; PH = pulmonary hypertension; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; SvO₂ = mixed venous oxygen saturation; WHO = World Health Organization; W.U = Wood units; 6MWD = 6-min walk distance. ^aComparison among the three groups.

^bComparison between the PEA/BPA and PH medication groups.

	Unstandardized		Standardized			95% C	Iv for B
	coefficients		coefficients				
Model	В	Std. error	В	t	Р	Lower	Upper
Intercept	31.554	1.292		24.41	<.001	28.998	34.110
CI	3.224	0.358	0.522	9.01	<.001	2.516	3.932
A-aDO ₂	-0.135	0.018	-0.435	-7.51	<.001	-0.170	-0.099

Table S4. Coefficients for the CI and A-aDO₂ affecting PvO₂ in patients with PAH

 $A-aDO_2$ = alveolar-arterial oxygen gradient; CI = cardiac index; CIv = confidence interval; PAH, pulmonary arterial hypertension; PvO_2 = mixed venous oxygen tension.

Table S5. Coefficients for the CI and A-aDO₂ affecting PvO₂ in patients with CTEPH

	Unstandardized coefficients		Standardized coefficients			95% C	Iv for B
Model	В	Std. error	В	t	Р	Lower	Upper
Intercept	36.760	0.897		41.00	<.001	32.852	33.439
CI	2.594	0.231	0.418	11.22	<.001	4.661	6.646
A-aDO ₂	-0.230	0.013	-0.645	-17.30	<.001	-9.104	-7.243

 $A-aDO_2$ = alveolar-arterial oxygen gradient; CI = cardiac index; CIv = confidence interval; CTEPH = chronic thromboembolic pulmonary hypertension; PvO_2 = mixed venous oxygen tension.

	PAH (N=72)			
Variable	Baseline	After treatment	Р	
RAP (mmHg)	5.4±4.1	6.1±4.3	.169	
mPAP (mmHg)	45.3±12.2	40.3±13.4	<.001	
CI (L/min/m ²)	2.8±0.6	$2.9{\pm}0.7$.063	
PVR (W.U)	9.3±4.9	7.3±3.8	<.001	
PaO ₂ (mmHg)	71.0±13.6	67.3±14.6	.025	
PaCO ₂ (mmHg)	36.4±4.1	38.9±5.0	<.001	
PvO ₂ (mmHg)	36.2±3.9	36.0±5.2	.790	
SvO ₂ (mmHg)	68.0±6.8	66.0±8.5	.065	
A-aDO ₂ (mmHg)	34.7±14.8	34.6±16.6	.982	
FVC, %pred. (%)	88.6±16.0	88.2±15.5	.789	
DLCO, %pred. (%)	61.5±20.3	63.3±20.6	.397	

Table S6. Hemodynamic and oxygenation parameters before and after treatment with pulmonary vasodilators in patients with PAH

Data are presented as mean \pm standard deviation. Post-treatment hemodynamics and oxygenation parameters were adopted from the most recent right heart catheterization data. The mean follow-up time from baseline right heart catheterization was 7.2 \pm 7.2 years in patients with PAH.

A-aDO₂ = alveolar-arterial oxygen gradient; CI = cardiac index; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; FVC, %pred. = percent predicted forced vital capacity; HPAH = hereditary pulmonary arterial hypertension; IPAH = idiopathic pulmonary arterial hypertension; mPAP = mean pulmonary arterial pressure; PAH = pulmonary arterial hypertension; PaCO₂ = arterial carbon dioxide tension; PaO₂ = arterial oxygen tension; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; SvO₂ = mixed venous oxygen saturation; W.U = Wood units.

	With pulmonary vasodilators (N=32)			With PEA or BPA (N=138)		
Variable	Baseline	After treatment	Р	Baseline	After treatment	Р
RAP (mmHg)	4.5±3.5	5.7±2.7	.087	5.3±3.7	4.2±3.0	<.001
mPAP (mmHg)	39.5±10.8	36.2±13.0	.007	45.8±10.1	25.2±8.3	<.001
CI (L/min/m ²)	2.7±0.6	2.9±1.0	.444	2.6±0.6	2.8±0.4	<.001
PVR (W.U)	8.4±4.2	7.1±4.5	.005	9.7±3.7	4.0±2.3	<.001
PaO ₂ (mmHg)	59.0±8.2	59.4±7.5	.842	58.4±9.1	69.1±14.3	<.001
PaCO ₂ (mmHg)	38.1±4.0	39.5±4.1	.004	36.5±3.7	40.5±3.7	<.001
PvO ₂ (mmHg)	34.0±3.8	34.3±3.5	.682	33.2±3.5	36.7±3.9	<.001
SvO ₂ (mmHg)	64.5±6.2	63.1±6.7	.205	62.6±6.9	67.5±6.7	<.001
A-aDO ₂ (mmHg)	44.0±1.7	41.0±10.4	.111	45.6±9.1	31.9±15.0	<.001
FVC, %pred. (%)	103.6±19.0	99.5±20.2	.019	93.4±18.4	90.6±16.9	.080
DLCO, %pred. (%)	76.1±21.5	72.3±11.6	.479	75.1±18.5	68.6±16.6	<.001

Table S7. Hemodynamic and oxygenation parameters before and after treatment in patients with CTEPH

Data are presented as mean \pm standard deviation. Post-treatment hemodynamic and oxygenation parameters were adopted from the most recent right heart catheterization data. The mean follow-up time from baseline right heart catheterization was 4.8 \pm 4.5 years in patients treated with pulmonary vasodilators and 2.7 \pm 4.0 years in those treated with PEA or BPA.

A-aDO₂ = alveolar-arterial oxygen gradient; BPA = balloon pulmonary angioplasty; CI = cardiac index; CTEPH = chronic thromboembolic pulmonary hypertension; DLCO, %pred. = percent predicted carbon monoxide diffusing capacity; FVC, %pred. = percent predicted forced vital capacity; mPAP = mean pulmonary arterial pressure; PaCO₂ = arterial carbon dioxide tension; PaO₂ = arterial oxygen tension; PEA = pulmonary endarterectomy; PvO₂ = mixed venous oxygen tension; PVR = pulmonary vascular resistance; RAP = right arterial pressure; SvO₂ = mixed venous oxygen saturation; W.U = Wood units.

Supplemental Figure

Figure S1– Selection of study sample

(A) PAH (B) CTEPH

 $BPA = balloon pulmonary angioplasty; CTED = chronic thromboembolic disease; CTEPH = chronic thromboembolic pulmonary hypertension; PAH = pulmonary arterial hypertension; PEA = pulmonary endarterectomy; PH = pulmonary hypertension; <math>PvO_2 = mixed$ venous oxygen tension

Figure S2– Kaplan–Meier survival curves stratified by tissue hypoxia in IPAH/HPAH (A) Group treated with selective pulmonary vasodilators (P=.006). (B) Untreated group (P=.011). IPAH = idiopathic pulmonary arterial hypertension; HPAH = heritable pulmonary arterial hypertension.

Figure S3– Correlations of mixed venous oxygen tension with CI (left) and A-aDO₂ (right)

(A) In pulmonary arterial hypertension (CI: r=0.642, P<.001; A-aDO₂: r=-0.549, P<.001). (B) In chronic thromboembolic pulmonary hypertension (CI: r=0.470, P<.001; A-aDO₂: r=-0.678, P<.001). PvO₂ = mixed venous oxygen tension; CI = cardiac index; and A-aDO₂ = arterial oxygen gradient.

Figure S4– Relationship between SvO₂ and PvO₂, and the importance of PvO₂ The figure depicts the hemoglobin oxygen dissociation curve. If the curve shifts to the left, the patients may experience tissue hypoxia ($PvO_2 < 35 \text{ mmHg}$), despite a normal SvO₂.

BMC Pulmonary Medicine. Volume 22, Article number 282.

2022年7月20日公表済

DOI: 10.1186/s12890-022-02073-0