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Abstract 

Cardiovascular disease (CVD) is a group of diseases involving the heart and the entire 

vascular system, such as strokes and coronary heart disease, usually resulting from 

cardiovascular risk factors (e.g., atherosclerosis, hypertension, hyperlipidemia, heart failure, 

etc.). Presently CVDs caused the highest mortality worldwide, posing a significant threat to 

human health. Thus, prediction and diagnosis of CVD are clinically important. 

Evaluating cardiac function and observing changes in chamber structures through 

various functional and structural parameters have a positive impact on the prediction and 

diagnosis of CVD. Although there are numerous types of risk factors, and their diagnosis 

mainly relies on the measurement of different physiological signals (pulse waves, 

electrocardiograms (ECG), etc.) and clinical indicators (blood pressure, blood lipids, etc.). 

Pulse waves contain abundant physiological information related to CVD and functional 

structures. However, the present clinical application of pulse diagnosis is primarily through 

qualitative analyses. Assessing cardiac function through pulse wave detection chiefly relies 

on doctors' subjective experience, and it lacks sufficient support from evidence-based 

medicine. Furthermore, the variability in pulse waveforms complicates the process of feature 

extraction and analysis of these waveforms. Thus, devising a robust methodology for feature 

extraction that can elucidate the relationship between pulse waves and specific aspects of 

cardiac function and structure is vital for enhancing CVD diagnosis and treatment. 

Surgical treatments are the most effective approach for the treatments of severe CVD. 

For instance, in the case of ischemic stroke caused by carotid artery stenosis (CAS), altering 

the vascular lumen structure through carotid endarterectomy, carotid angioplasty, and 

carotid stenting are common and effective treatment methods. Numerous research indicated 

that obtaining hemodynamics (e.g., blood flow velocity and pressure, etc.) before and after 

surgery is highly instructive for the selection and optimization of surgical procedures. 

Currently, although computational fluid dynamics (CFD) is the major method for obtaining 

hemodynamics, it requires specialized operational skills and high computational costs, 
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which hinder its clinical application. Thus, it is very important to develop an effective and 

accurate method for hemodynamic calculations. 

Artificial intelligence methods including machine learning and deep learning enables 

providing new solutions to solve these problems. Leveraging big data and high-performance 

GPU computing clusters, AI technology is capable of rapidly and accurately extracting 

underlying features. These features can then be abstracted into high-level attribute features, 

which further enables the AI to accomplish pattern recognition and logistic regression tasks. 

Based on the research background, the main content of this thesis is as follows: 

Chapter 2: 412 subjects after strict screening, are divided into two datasets according to 

whether suffering from cardiovascular diseases and high-risk factors. After that, pulse wave 

data and three cardiac function parameters of the two datasets were collected, while a fully 

connected network was developed for the ML-based regression analysis, assessing cardiac 

function status by directly predicting different cardiac function parameters through pulse 

waves (MAPE<15%). And the Bland-Altman analysis results demonstrating good 

consistency between ML prediction and clinical measurements. This Chapter revealed the 

quantitative relationship between pulse wave signal and cardiac function. 

Chapter 3: Based on the finding of Chapter 2, we gathered clinical data from 237 patients 

with heart failure (HF) for further validating the quantitative relationship between pulse 

wave and specific disease. We selected five parameters that reflect the blood supply capacity 

in patients with HF. In addition to the previously used fully connected network, we also 

utilized the DenseNet network. Both networks accurately predicted the blood supply 

capacity parameters of heart failure patients based on pulse wave signals (MAPE<15%), 

quantitatively analyzing the relationship between pulse wave signals and blood supply 

capacity in the patients with heart failure. And besides, the ML prediction is agreed with the 

clinical measurements. This chapter proposed a new machine learning strategy that revealed 

the feasibility and possibility of pulse wave-based evaluation for blood supply capability in 

patients with heart failure, which will be clinically significant in health monitoring and 

deterioration prevention. 

Chapter 4: We established four-point cloud datasets of the cardiovascular 
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hemodynamics of carotid artery stenosis before and after carotid artery surgery from CFD 

simulation results. The point cloud dataset can reflect the overall structure and inside flow 

field distribution of various models with remarkable resolution. We employed a novel deep 

learning network that enables analyzing and extracting the relationship between global 

geometric information and inside hemodynamics directly while avoiding the complex 

operations of CFD. Regrading sample resolution and applicability, our deep learning 

strategy outperforms previous studies on processing or deep learning. Statistical analysis 

shows that our deep learning method's predictions of hemodynamics are consistent with the 

results of the CFD method, but with a significant reduction in computational time. This 

chapter presents a DL-based strategy that revealed the possibility in real-time monitoring for 

carotid artery stenosis treatment, which is beneficial for the clinical treatment of ischemic 

stroke. 

In summary, this thesis explores the application of AI approaches in the diagnosis and 

prediction of cardiovascular diseases, demonstrating high clinical value and application 

prospects. 

 

Keywords： 

Cardiovascular disease (CVD); Deep learning; Machine learning; Hemodynamics; 

pulse wave; carotid artery stenosis surgical treatments. 
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1.1 Cardiovascular diseases 

1.1.1 Causes of cardiovascular disease (CVD) 

Cardiovascular disease (CVD) usually indicates heart, brain, and systemic ischemic or 

hemorrhagic diseases, such as type 2 diabetes, hyperlipidemia, atherosclerosis, hypertension, 

ischemic stroke caused by carotid artery stenosis. 

1.1.2 The harm of cardiovascular diseases: 

CVD poses a serious threat to human health, especially for people over the age of 50. It 

is characterized by high morbidity, high disability, and high mortality rates. More than 15 

million people die from cardiovascular diseases worldwide every year, ranking first among 

all causes of death. Heart failure is a serious consequence of cardiovascular disease that has 

not been treated promptly and effectively. Coronary artery disease can lead to insufficient 

blood supply to the heart, which may cause a myocardial infarction. Myocardial infarction 

can impair the heart's pumping function, leading to heart failure. 

1.1.3 Diagnosis and treatment of cardiovascular diseases: 

Currently, cardiovascular disease is the highest mortality disease in the world, posing a 

serious threat to human health. Therefore, the diagnosis and treatment of cardiovascular 

diseases are of great significance. 

Risk factors and irregular cardiac function are the direct causes of CVD. Hence, 

detecting various risk factors has a positive effect on the diagnosis and treatment of CVD. 

There are many risk factors for cardiovascular diseases. Their detection mainly relies on 

various clinical signals (such as pulse waves, electrocardiograms, and heart sounds) and 

clinical indicators (such as blood pressure, blood lipids, and blood viscosity). Taking pulse 

waves as an example, noninvasive hemodynamic detection technology, exemplified by pulse 
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wave detection and analysis, has become prevalent as a crucial approach for noninvasive 

cardiovascular function examination due to its convenience, speed, and high reliability. 

Pulse waves begin with the heartbeat, propagate in the arterial blood vessels, and 

continuously reflect at various downstream branches. Therefore, pulse waves are influenced 

not only by the heart but also by a variety of physiological and pathological factors, including 

vascular resistance and arterial stiffness at different arterial levels and branches. Pulse wave 

characteristics, such as velocity, shape, amplitude, and period, are very correlated to vascular 

function conditions. Therefore, distinct physiological and pathological alterations result in 

diverse pulse wave features. Jin et al. found that pathological events such as atherosclerosis 

can significantly increase pulse wave velocity. M et al. discovered that hypertension or 

certain CVDs can lead to wave reflection advances, causing the first and second wave peaks 

to overlap. Song et al. found that hypertension can also increase the amplitude and duration 

of the major wave of the pulse shape. Fig. 1-1 shows that cardiovascular function changes 

caused by CVD risk factors can be reflected in changes in pulse wave waveform. 

 

Fig. 1-1 Change of pulse wave under different physiological and pathological. (a) 

normal (b) aortic stenosis (c) the aortic regurgitation (d) arteriosclerosis. The decrease of 

arterial elasticity caused by CVD speed up the propagation of pulse wave. Reflected in the 

characteristics of the waveform is the early appearance of the reflected wave (the second 

wave peak) or the increase of the amplitude of the main wave peak. 

However, multiple risk factors often coexist. In addition, pulse waves are influenced by 
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age, gender, and lifestyle habits. This makes it difficult to extract pulse waveform parameters 

related to specific types of CVD risk factors. Therefore, obtaining and analyzing the typical 

features of pulse waves under specific types of risk factors helps in the effective diagnosis 

and treatment of different CVDs. 

Obtaining lesion site information of CVD patients based on medical imaging technology 

and further obtaining the patient's hemodynamic parameters based on this information have 

important significance for the treatment and diagnosis of CVD. Medical imaging techniques 

such as computed tomography (CT) and digital subtraction angiography are used to examine 

cardiovascular lesions. Medical imaging technology can noninvasively obtain lesion tissue 

images (such as coronary artery stenosis) and provide a reliable data basis for establishing 

personalized 3D cardiovascular models based on precise anatomical structures. Combining 

computational fluid dynamics (CFD), finite element analysis, fluid-structure interaction (FSI) 

techniques, etc., accurate hemodynamic parameters of lesion sites can be obtained, thereby 

realizing the formulation and optimization of related treatment plans. This paper mainly 

focuses on the calculation of hemodynamics. 

Taking ischemic stroke caused by carotid artery stenosis as example, blockage of the 

common carotid artery (CCA) or internal carotid artery (ICA) caused by atherosclerosis, also 

known as carotid artery stenosis (CAS), resulting in reduced blood supply to the brain is 

known as ischemic stroke, accounting for brain stroke 87%. Patients with severe CAS often 

require revascularization surgery to prevent ischemic stroke. The corresponding commonly 

used surgical methods as shown in Figs. 1-2, 1-3, and 1-4: carotid endarterectomy, carotid 

angioplasty, and carotid stent placement [1–4], the following background should be 

explained: 

Carotid endarterectomy is a surgical treatment for carotid artery disease, used to remove 

plaque in the carotid artery to improve the blood flow of the carotid artery and reduce the 
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risk of stroke. Plaque accumulation (atherosclerosis) may restrict blood flow to the brain. 

During surgery, the surgeon makes an incision in the front of the neck, opens the carotid 

artery, and clears the plaque blocking the artery. Then, the surgeon repairs the artery with 

sutures or a patch made from a vein or artificial material (graft repair). 

 

Fig. 1-2 Schematic diagram of carotid endarterectomy 

Carotid angioplasty is a medical procedure that involves opening a blocked artery to 

restore blood flow to the brain. During the procedure, a narrow area is opened using a thin 

tube with a balloon tip, and a tiny mesh tube called a stent can be placed in the area to help 

keep the artery open. Carotid angioplasty is considered a non-surgical procedure because it 

is less invasive than surgery and may shorten recovery time. The procedure is commonly 

used to treat or prevent strokes, especially when the blockage in your carotid artery reaches 

or exceeds 70%, and your overall health is not good enough to undergo surgery. 
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Fig. 1-3 Schematic diagram of carotid angioplasty 

Carotid artery stent placement is a medical procedure used to treat carotid artery stenosis, 

which is the narrowing of the carotid artery caused by plaque accumulation. During the 

procedure, a small metal coil called a stent is placed in the blocked artery to support it and 

reduce the chances of it narrowing again. Carotid angioplasty and stenting can be used when 

traditional carotid surgery (carotid endarterectomy) is not possible, or the risks are too high. 

Compared to carotid endarterectomy, this procedure is considered a less invasive option with 

a quicker recovery time. However, as with any medical procedure, there are risks involved, 

and patients should discuss the risks and benefits with their doctor. 
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Fig. 1-4 Schematic diagram of carotid artery stent placement 

  Numerous studies and clinical practices have demonstrated that obtaining accurate 

hemodynamic parameters of cardiovascular lesions before and after surgery is crucial for the 

selection and optimization of surgical plans [5–7]. These three surgeries can effectively 

improve the issue of a narrowed carotid artery lumen. Therefore, obtaining hemodynamic 

parameters of the blood flow in the lumen before and after surgery can provide guidance for 

the optimization of surgical plans. 

Computational Fluid Dynamics (CFD) is a major method for obtaining hemodynamics 

[8–11]. However, CFD typically requires specialized operational skills and high 

computational cost [12,13]. CFD methods usually take several hours to calculate the 

hemodynamic parameters of a patient's individualized model, which is difficult to accept for 

clinical applications, especially for real-time surgical guidance. 

1.2 Artificial intelligence (AI) 

1.2.1 Definitions and classifications. 

Artificial Intelligence (AI) involves the imitation of human cognitive abilities in 

machines or computer systems, allowing them to think, learn, and tackle problems similarly 
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to humans [14]. This interdisciplinary field merges computer science, mathematics, 

cognitive psychology, and other areas to develop algorithms, models, and systems capable 

of executing tasks that generally require human intellect [15]. 

Essential elements of AI encompass machine learning, deep learning, and natural 

language processing. These components allow AI systems to acquire knowledge from data, 

refine their performance over time, and engage with humans in a more intuitive manner. [16] 

1.2.2 Machine learning and deep learning  

Machine Learning (ML) is a subset of AI, which enables computers to learn 

automatically through accumulated experiences [17]. ML algorithms typically build a 

mathematical model based on sample data, known as "training data", to make predictions or 

decisions without being explicitly programmed to perform the tasks, and to uncover key 

insights in data. These algorithms improve their performance as the number of samples 

available for learning increases. They identify patterns within the given data, learn from 

them, and then apply what they've learned to make informed decisions [18]. This process 

begins by feeding the algorithm high-quality, relevant data and allowing it to learn and make 

predictions.  

Deep Learning (DL) is a subset of AI and ML [19], employs multi-layered neural 

networks to simulate human brain behaviour. These models automatically and adaptively 

learn from data through the creation and optimization of artificial neural networks. Unlike 

ML, DL combines basic features to generate a lot of abstract, complicated representations, 

enabling it to discover distributed feature representations in data. This makes it especially 

effective for handling large volumes of unstructured or unlabelled data, positioning it as a 

valuable tool in big data analytics. 
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1.2.2 Detection of CVD conditions or factors via AI approaches 

Utilization of AI approaches to detect cardiovascular disease conditions or cardiac 

function mainly by processing physiological signals related to the cardiovascular system. In 

this paper, we choose the pulse wave as the research object. The main reason is compared 

with other physiological signals (such as heart sounds, etc.), pulse wave contains richer 

physiological and pathological information. The pulse wave is often influenced by various 

CVD risk factors, complications, and clinical parameters. In contrast, most previous studies 

have primarily concentrated on examining the relationship between pulse waves and various 

cardiac function parameters using statistical analyses, which are typically of a qualitative 

nature. And because of the uncertainty of noise and interference, it is impossible to 

quantitatively and accurately predict cardiac function parameters to provide clinicians with 

various information about pulse waves. Although several studies based on physical-

mathematical models could capture our body signals, like aortic pressure and cardiac output, 

however they usually have limitations in selecting and simplifying reliable governing 

differential equations to accurately calculate complicated mechanisms and these physical-

mathematical models sometimes require additional input of various physiological factors, 

and the calculation cost is very high.  

For machine learning methods, for this long-standing and challenging topic, the recent 

rapid development of AI technology may be able to provide a solution because of its 

powerful feature extraction ability and significant success in various signal analysis. They 

have been successfully applied for medical signals analysis, such as pulse wave, 

electrocardiogram (ECG), and heart sound: Hannun et al. reported an accurate diagnosis of 

arrhythmia based on the feature extraction of dynamic ECG signals [20]; Chen et al. 

confirmed the recognition of different heart sound signals [21]; Li et al. realized the 

classification task of five cardiovascular disease risk factors based on pulse wave [22]. These 
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studies have however paid a specific attention to the pattern classification while not being 

able to provide a direct and accurate prediction on the values of the cardiac function 

parameters through medical signals, which remains challenges.  

1.2.3 Prediction of cardiovascular hemodynamic based on deep learning 

Several studies have evaluated the potential of deep learning for predicting 

hemodynamics. For example, Itu et al. implemented fraction flow reserve (FFR) calculations 

using machine learning[18], while Guo et al. employed a deconvolution network to 

anticipate changes in the flow field around simple geometric obstacles [23]. Liang et al. 

utilized deep learning to predict the hemodynamics of an ideal thoracic aortic model [24]. 

Compared to conventional Computational Fluid Dynamics (CFD) methods, deep 

learning enhances computational speed for hemodynamic parameters and simplifies 

complex operations. However, these studies share a common limitation: their reliance on 

overly simplistic and idealized flow datasets. The low resolution of these datasets 

inadequately represents the intricate geometry and flow field distribution of the 

cardiovascular system, as illustrated in Fig. 1-5. 

Furthermore, the proposed deep learning networks require adjustments for different 

hemodynamic parameters, limiting their universality. Hence, the application of deep 

learning to predict patient-specific cardiovascular hemodynamics remains challenging. 
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Fig. 1-5 Guo's study presented a 3D flow velocity field prediction, with CFD simulation 

on the left and DL prediction on the right. The pixel-level resolution was insufficient to 

accurately depict the cardiovascular system's geometry and hemodynamic distribution. 

1.3 Objectives 

Based on the above research background, this study separately collected 412 subjects' 

pulse wave signals physiological and pathological information, 237 patients with heart 

failure’s pulse waves and their in-hospital clinical information, and 297 subjects' cerebral 

and carotid CT data. On this basis. 

(1) For the predication of cardiac function of different populations:  

• Select cardiac function parameters: artery compliance (AC), total peripheral 

resistance (TPR), and stroke volume (SV).  

• Use machine learning to quantitatively analyze the relationship between 

pulse wave and cardiac function. 

• Develop a machine learning-based strategy for predicting cardiac function 

parameters. 

(2) For the predication of blood supply capability of patients with heart failure: 

• Select parameters left ventricular ejection fraction (LVEF), left ventricular 

end-diastolic diameter (LVDd), left ventricular end-systolic diameter (LVDs), 

left atrial dimension (LAD), and peripheral oxygen saturation (SpO2).  

• Use two machine learning networks to quantitatively reproduce the 

relationship between pulse wave and blood supply capability of patients with 

heart failure. 

• Employed two machine learning networks for predicting blood supply 

capability parameters. 
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(3) For cardiovascular hemodynamic prediction of carotid artery stenosis:  

• Select CVD: carotid artery stenosis. 

• Use deep learning to bridge the correlation between hemodynamics and 

geometry of artery stenosis.  

• Employed a fast, accurate and high-resolution deep learning approach to 

predict hemodynamics of carotid artery stenosis before and after surgical 

treatments.  

1.4 Thesis contents 

The contents of this thesis are outlined as follows: 

• Chapter I: an introduction of cardiovascular diseases, artificial intelligence methods, 

and a proposal of research objectives of this thesis; 

• Chapter II: a study utilizing machine learning approach for the prediction of cardiac 

function for different populations through pulse wave;  

• Chapter III: a study utilizing two machine learning networks for the evaluation of 

blood supply capability specifically for patients with heart failure through pulse wave;  

• Chapter IV: a study to predict the internal hemodynamics of carotid artery stenosis 

before and after a surgical treatment via deep learning; 

• Chapter V: a conclusion of this study and the outlook beyond the content in this thesis.
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Chapter II 

Machine learning-based strategy in fast predicting cardiac 

function using peripheral pulse wave   
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2.1 Introduction 

Pulse wave (Fig. 2-1-a) has been extensively used for the initial clinical diagnosis of cardiovascular diseases 

(CVDs) owing to its convenient and rapid measurement with high reliability[25] [26]. Pulse wave starts from 

the heart and propagates from the aorta to all levels of branched arteries (Fig. 2-1-c), and it contains a large 

amount of information (Fig. 2-1-I) associated with the cardiovascular status under normal and abnormal 

conditions. It is pointed out that the cardiovascular function is characterized by pulse wave [27]; the arterial 

stiffness degree of patients with type 2 diabetes can be judged via pulse waves through conducting quantitative 

wave analysis [28]; and there exist specific discrepancy in the harmonics of pulse waves between hypertension 

patients and healthy people based on frequency-domain analysis method [29]. 

 

Fig. 2-1 Relationship among pulse wave, cardiac function parameters, and cardiac function. 

CO: Cardiac Output; IBP: Invasive Blood Pressure; TPR: Total Peripheral Resistance; SpO2: 

Blood Oxygen Saturation; RESP: Respiration; T: Temperature; LAT: Lactate; HR: Heart 

Rate; GLU: Blood Glucose. 
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As illustrated in Fig. 2-1-II, compared with pulse wave, cardiac function parameters (Fig. 

2-1-b) can reflect the functional state of CVS more accurately and directly in terms of total 

peripheral resistance (TPR), stroke volume (SV), arterial compliance (AC), etc. For instance, 

SV directly represents the outcome of heart-pumping ability, is a perioperative monitoring 

indicator during cardiovascular surgery [30]; AC reflects the ability of the artery to passively 

expand during ventricular systole to accommodate most of the stroke volume while 

continuing blood flow during diastole [31]; and TPR is the amount of afterload on circulating 

blood exerted by the circulation system [32]. However, directly measuring cardiac function 

parameters usually requires specialized and expensive equipment along with the guidance 

of clinical technicians, and even in an invasive manner [33][34], which hinders the clinical 

application. Patients with CVDs normally suffer from several CVDs or pathogenic high-risk 

factors simultaneously [35][36], which may result in rapid deterioration or even sudden 

death without obvious symptoms [37][38][39]. Thus, timely while feasible diagnosis and 

treatment are of great importance for the patients. On the other hand, the diagnosis process 

associated with CVDs is normally of high complexity requiring professional physicians to 

perform with consideration of multi-cardiac function parameters [40][41][42]. Therefore, 

clarification and quantification of the correlations between pulse wave and cardiac function 

parameters (Fig. 2-1-IV) is of great clinical significance in health monitoring and CVD 

diagnosis, which remains however poorly studied yet.  

Previous studies have mainly focused on analyzing the correlations between pulse wave 

and various cardiac function parameters through statistical analyses [43][44][45], which are 

normally qualitative and fail to provide clinicians with a quantitative and accurate prediction 

on various cardiac function parameters because of the uncertainties due to noise and 

interference information in concern with pulse waves. While a variety of physical-

mathematical models of the CVS have been also proposed to capture the physiological 
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signals such as aorta pressure and cardiac output [46][47][48], they usually share limitations 

in the difficulties of selecting and simplifying reliable control differential equations to 

accurately capture the complex mechanisms in CVS, and of appropriate defining and 

adjusting the many various parameters [49][50]. These physical-mathematical models 

sometimes also need additional input of multiple physiological factors with high 

computational costs [51]. For this long-standing and challenging topic, recent rapid 

developments in machine learning (ML) methods may be able to provide a solution because 

of its powerful feature-extracted capability and significant success in various signal analyses 

[52][53][54][55]. An ML strategy may make this possible through setting the personalized 

pulse wave signal as input and quantitatively predicting the cardiac function parameters as 

output. The ML-based methods normally comprise more abstract high-level features of the 

signal with multi-layer perceptions of the network or through integrating low-level features, 

thus capable of achieving signal classification or prediction tasks [56]. They have been 

successfully applied for medical signals analysis, such as pulse wave, electrocardiogram 

(ECG), and heart sound: Hannun et al. reported an accurate diagnosis of arrhythmia based 

on the feature extraction of dynamic ECG signals [20]; Chen et al. confirmed the recognition 

of different heart sound signals [57]; Li et al. realized the classification task of five 

cardiovascular disease risk factors based on pulse wave [22]. These studies have however 

paid a specific attention to the pattern classification while not being able to provide a direct 

and accurate prediction on the values of the cardiac function parameters through medical 

signals.  

In this study, we aim at for the first time proposing an ML strategy that enables a fast 

while accurate noninvasive prediction of the cardiac function parameters based on pulse 

waves. We collected pulse wave signals from 412 subjects while recording their relating 

cardiac function parameters and clinical information. To accurately predict the cardiac 



Dissertation, Chiba University 

 17 

function parameters with the limited clinical data, we inflicted high requests in our datasets 

and ML structure to fit the flexibility of the input signal formats, which is also the major 

technical matter and hence the advantage of this study. Based on various cardiovascular 

statuses, we established two high-quality pulse wave datasets and developed a novel ML-

based framework for predicting three selected cardiac function parameters (AC, TPR, and 

SV). Error analysis results verify that our ML model can achieve high accuracy in the 

prediction of TPR and SV (MAPE<15%) and the predictions are well consistent with the 

clinical measurements. 

2.2 Methods 

2.2.1 Data collection and ethics approvals 

All data employed in this study was taken from a previous study [4], in which the 

original wrist-based pulse wave data of 412 subjects were collected along with the related 

clinical information. For all the subjects, pulse waves and blood pressure were measured and 

recorded with the Blood Pressure/Pulse Wave Examining Apparatus -Fukuda VS-1500A 

under doctors' guidance with each pulse wave collected comprising more than five valid 

periods, while the cardiac function parameters were measured and recorded with the CHM-

T3002 Cardiac Hemodynamic Monitoring device (manufactured by Shandong Baolihao 

Medical Appliances, Ltd, China)  taken by clinicians and the related clinical information 

involving height, weight, age, gender, etc. were also collected (Fig. 2-1), All subjects were 

informed of the detection date and were asked not to eat irritating food or drink alcohol until 

the collection was completed. All the subjects were registered at Beijing University of 

Technology Hospital in 2015, and their medical records were also collected associated with 

CVDs and related risk factor information. 

The Clinical Research Ethics Committee of the Beijing University of Technology 
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approved the study. All measurements were carried out under the related regulations and 

guidelines. We obtained the signed informed consent. 

2.2.2. Data screening 

To verify whether our machine learning method is universally applicable for both 

healthy people and CVD patients, based on the pathological information, we classified the 

datasets into two subject groups: a healthy-subject group and a CVD-subject group. Fig. 2-

2 illustrates the procedure of data screening. For the CVD-subject group, 138 subjects 

fulfilled the criteria: 1) the detection of the pulse wave and the cardiac function parameters 

was completed; 2) the patients with congenital heart disease, heart failure, aortic aneurysm, 

and other uncommon CVDs were excluded, according to medical interviews, physical 

examinations, and medical history information checks (due to the sample data limited, we 

further excluded few patients with diseases such as congenital heart disease that had 

significant effects on pulse waves and cardiac function parameters [58]); 3) the group 

subjects solely suffered from one or more of the five cardiovascular diseases or high-risk 

factors among coronary heart disease, hypertension, hyperlipidemia, arteriosclerosis, and 

type 2 diabetes. For the healthy-subject group, 126 subjects fulfilled the criteria: 1) the 

detection of the pulse wave and the cardiac function parameters was completed; 2) the 

patients involved in the CVD-subject group were excluded, according to medical interviews, 

physical examinations, and medical history information checks. In addition, taking into 

consideration that the basic physiological parameters can affect the pulse wave 

characteristics [59], we carried out an independent sample t-test for the basic physiological 

parameters of the two subject groups to exclude the impact of multiple noise factors on the 

two data groups. Moreover, we conducted a Pearson's chi-squared test to investigate whether 

the gender distributions have significant correlations with cardiac function [38] in our 
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datasets.  

 

Fig. 2-2 Data screening procedure. Screening criteria a,b,c,d: for a, 51 subjects with incomplete 

relevant information are excluded; for b, with a focus on the effects of common CVDs and 

high-risk factors, 97 patients with uncommon CVDs or risk factors are excluded; for c,d
, a 

healthy-subject group of 126 subjects and a CVD-subject group of 138 subjects are created. 

2.2.3 Pulse wave preprocessing and dataset creation 

As reported by previous studies there often exist various noises and interrupt signals 

introduced during the pulse wave sampling procedure [60][61][62], thus the preprocessing 

of the pulse wave signals that mainly contain denoising and normalization was performed 

by averaging the pulse waveforms of the targeted pulse waves of each subject based on the 

data of all the valid cycles (more than five cycles at a stable state)[63][64]; and the noise 

was eliminated with the wavelet transform decomposition method [28], [65]. Since the 

pulse-wave sampling points were confirmed to convert from 1000 to 100 according to the 
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Nyquist theorem and the actual sampling frequency (1000Hz), substantially the pulse wave 

amplitude was normalized to a range of 0-100. As a result, two pulse wave datasets were 

created comprising a 126 healthy-subject dataset and a 138 CVD-subject dataset, and they 

were further separated to training set and test set by the division ration of 4:1. Details of the 

two datasets for the machine learning analysis are summarized in Table 1. 

Table 2-1: The details of ML analysis data sets. 

Pulse wave datasets 
Cardiac function 

parameters 

Total pulse 

number 
Training number Test number 

H-subject dataset 

AC 126 101 25 

TPR 126 101 25 

SV 126 101 25 

CVD-subject 

dataset 

AC 138 111 27 

TPR 138 111 27 

SV 138 111 27 

Note: AC: Arterial Compliance; TPR: Total Peripheral Resistance, SV: Stroke Volume. 

2.2.4 Machine learning network 

To choose an appropriate ML network for this study, we conducted many preliminary 

experiments for testing and comparison of prediction stability and performance among 

different networks (e.g., CNN and other machine learning networks). As a result, a fully 

connected network was substantially chosen and employed in all the simulations, which was 

further optimized in terms of the network parameters, e.g., number of hidden layers, neurons 

of each hidden layer, loss function, et al., as illustrated in Fig. 2-3. The network is composed 

of three parts: an input layer, five hidden fully connected layers, and an output layer. In 

addition, the neuron quantity in the five fully connected layers was set to be 1024, 256, 64, 

16, and 4, respectively. And the ReLU was employed as the activation function after each 
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layer. The mean-square error (MSE) was used as the loss function; adam optimizer was 

employed with a learning rate of 0.001, ϵ = 0.001, ρ1 = 0.9, ρ2 = 0.999, and δ = 1E-8, 

respectively [66]. The ML network was trained with TensorFlow (v2.0.0rc, Python 3.7 on a 

Nvidia GeForce GTX 1660 Ti GPU).  

The training process for the ML network was accomplished by separately setting the 

three parameters (AC, TPR, and SV) as output while employing the corresponding pulse 

waves of two subject groups as input, which resulted in six training times in total for the 

prediction of the three cardiac function parameters of the two subject groups. The input layer 

length is taken as 100, which is equal to the sampling number of each pulse wave after 

normalization, while the length of the output layer is 1, namely the single selected cardiac 

function parameter in each training time. Since all the parameters for the six training 

networks were chosen and adjusted based on the prediction performance among the huge 

networks, we further optimized the configuration and stored the set of parameters associated 

with the six training networks for other predictions. Error analysis and consistency analysis 

were also conducted for each corresponding test dataset. 

 

Fig. 2-3 The architecture of machine learning network. The network contains an input layer, 
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an output layer and five hidden layers. The numbers represent the neuron quantity of each 

hidden layer. AC: Arterial Compliance; TPR: Total Peripheral Resistance, SV: Stroke 

Volume. 

2.2.5 Error functions and consistency analysis 

To evaluate the ML model, we employed the Mean Absolute Percentage Error (MAPE) 

as the error function:  

MAPE =  
100%

𝑛
∑ |

�̂�−𝑦

𝑦
|𝑛

𝑖=1 ,                                                 (1) 

where 𝑦 and �̂� denote the clinical-measured value and the ML-predicted value of the 

cardiac function parameters, respectively; 𝑛 is the quantity of the test dataset. The MAPE 

was calculated for the test datasets with the accuracy defined as: 

Accuracy =  1 − MAPE,                                                   (2) 

In addition, we utilized the Bland-Altman method for the consistency analysis of the 

clinical measurement and ML-based prediction. The Bland-Altman method can dissect the 

discrete tendency, the agglomeration tendency, and the relevance of the three cardiac 

function parameters between two datasets based on the two different methods. When the 

three parameters fall within the allowable range, it can be considered that the two data sets 

have a good consistency, and the two methods can be substituted for each other [67]. See 

details in the results section. 

 2.3 Results 

 After the data screening and preprocessing, two high-quality pulse wave datasets of 

a healthy-subject group (H-group) and a CVD-subject group (CVD-group) were successfully 

built up, which were adapted to the flexible input data format and the datasets. As illustrated 

in Fig. 2-4, five pulse waves were plotted along with their averages from the two subject 
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groups, respectively, which obviously display distinguishable waveform features between 

them. To clarify the featured discrepancy between the two groups associated with the three 

cardiac function parameters (SV, AC, TPR) along with the related clinical information, we 

further performed the t-test for the two subject groups. As summarized in Table 2, the mean 

values of the H-group and CVD-group differ significantly in terms of blood pressure and 

cardiac function parameters (p<0.05), but there is no dissimilarity between the two groups 

regarding basic physiological parameters (age, height, weight, and BMI (Body Mass Index)) 

(p>0.05). Besides, the Pearson's chi-squared test results indicate that there exist some 

significant correlations between gender distribution and cardiac function (χ2>3.84, p<0.05) 

(Table 2). 

Fig. 2-4 Five samples (dashed lines) of the preprocessed pulse waves from H-group and 

CVD-group along with their averages (solid lines), respectively. 

 

Table 2-2: Basic characteristics in H-Group and CVD-Group. 

Characteristics All subjects H-group CVD-group p 
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Note: Data are presented as mean± SD; p values were calculated based on the 

independent samples t-test; and Pearson’s chi-squared test results for gender distributions 

are also given. BPS: Blood Pressure-Systole (mmHg); BPD: Blood Pressure-Diastole 

(mmHg); AC: Arterial Compliance (ml/mmHg); TPR: Total Peripheral Resistance 

(dyn·s/cm^5), SV: Stroke Volume (ml/Beat). 

 

For the three cardiac function parameters (SV, AC, TPR) we constructed three datasets 

separately for each of the two subject groups, resulting in six datasets in total, and applied 

the six datasets to the ML model to train and optimize the model through minimizing the 

loss function during each epoch of the training process. As depicted in Fig. 2-5, the six 

learning curves all converge well with a monotonously declining trend without overfitting 

at the training phase. In addition, to avoid overfitting caused by using the limited datasets, 

we employed the early stopping strategy for all the ML analyses i.e., terminating the iteration 

during the training phase to prevent overfitting [68][69]. As shown in Fig 2-6, the accuracy 

of the test dataset for every 20 epochs was recorded with the training loss function. When 

the accuracy of the test dataset could not be improved in the continuous 100 to 200 iterations 

Age 61.6 ± 7.1 60.7 ± 6.0 62.5 ± 8.1 0.102 

Heights 161.2 ± 6.9 161.1 ± 7.0 161.4 ± 6.9 0.809 

Weight 66.2 ± 9.9 65.7 ± 9.5 66.7 ± 10.7 0.541 

BMI 25.5 ± 3.6 25.6 ± 3.9 25.4 ± 3.4 0.735 

BPS 140.8 ± 19.0 125.8 ± 8.9 155.8 ± 13.8 0.000 

BPD 83.0 ± 10.5 77.3 ± 6.7 88.6 ± 10.6 0.000 

SV 76.7 ± 17.7 80.8 ± 18.4 72.9 ± 16.1 0.005 

AC 1.7 ± 0.6 1.9 ± 0.5 1.4 ± 0.5 0.000 

TPR 1585.3 ± 400.0 1479.3 ± 376.0 1686.0 ± 402.2 0.001 

Male 63 22 41 
χ2=5.440, p=0.020 

Female 201 104 97 
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(more than 50 epochs), we introduced the early stopping strategy to stop the redundant 

training work to avoid overfitting. After the training, the optimal parameters of each ML 

model were stored for further use in predicting the three cardiac function parameters of two 

subject groups at the test phase. The error analysis was further made and as summarized in 

Table 3, both TPR and SV of the two subject groups demonstrate a low error level with 

MAPE<15%, indicating that the present ML model is capable to achieve a sufficiently 

accurate prediction of the two key cardiac function parameters.  

 

 

Fig. 2-5 Learning curves for two subject groups in terms of cardiac function parameters of 

arterial compliance (AC), total peripheral resistance (TPR), and stroke volume (SV).  
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Fig. 2-6 Illustration of the early stopping strategy for avoiding overfitting and redundant 

learning. 

 

Agreement between ML-predicted and clinically measured results was further verified 

through the Bland-Altman method-based analysis. As plotted in Fig. 2-7, the relationship 

between the average (horizontal axis) and the difference (vertical axis) is illustrated in a 

manner of scatter plot; and the 95% distribution range, i.e., the confidence interval was 

examined. Note that the two methods are generally considered to be consistent well enough 

when there are 95% more points in the scatter plot within the confidence interval that does 

not exceed the professionally acceptable critical value range [70]. It is seen that for the three 

cardiac function parameters of AC, TPR, and SV, 24 of 25 sets in H-group and 26 of 27 sets 

C D- rou   TP 
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in CVD-group fall in the 95% confidence interval, respectively, results of the two methods 

are consistent with each other. Our results thus demonstrate that the ML-based predictions 

are well consistent with the measurements in both healthy and CVD subject groups whereas 

the errors (MAPE) also display a relatively high level (>10%), which is expected to be 

further improved by use of larger datasets as our future task.  

Table 2-3. Error analysis of ML-based three cardiac functions parameters of arterial 

compliance (AC), total peripheral resistance (TPR), and stroke volume (SV) in two subject 

groups.  

Dataset Error Function AC (%) TPR (%) SV (%) 

H-group 

MAPE 

28.5 14.7 13.1 

CVD-group 23.1 11.7 10.8 

Differences 5.4 3.0 2.3 
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Fig. 2-7 Bland-Altman analysis-based comparison between two subject groups in terms of cardiac function 

parameters of arterial compliance (AC), total peripheral resistance (TPR), and stroke volume (SV). 

Relationship between the average (horizontal axis) and the difference (vertical axis) is illustrated in a manner 

of scatter plots. 

2.4 Discussion 

In this study, we developed a novel ML-based model with a multi-layered, fully 

connected network, which is validated to be capable of achieving a pulse wave-based high-
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accurate prediction of three cardiac function parameters for both healthy-subject group and 

CVD-subject group. The model-based prediction is very fast that enables an output of the 

predicted cardiac function parameters within merely one second. The error analysis indicates 

that the ML model-based prediction is of high performance particularly for TPR and SV, 

achieving a low level of MAPE in both the healthy-subject group (MAPE: 14.7%, 13.1%) 

and the CVD-subject group (MAPE: 11.7%, 10.8) (Table 3). The consistency analysis 

further verifies a reasonable agreement between the ML model-based and the clinically 

measured results, demonstrating the validity of our model for clinical application. According 

to what we know, our study based on ML method first revealed the feasibility and potential 

in predicting cardiac function through pulse wave. 

Compared to conventional methods mostly based on wave analysis strategy, the ML 

strategy proposed enables the extraction and reproduction of the complicated correlations 

between pulse wave signal and cardiac function parameters. On the other hand, with 

consideration of that many factors may affect and even lead to uncertainties in the pulse-

wave characteristics such as age, weight, CVDs and other diseases, we herein carried out a 

strict data-screening (Fig. 2-2) in a manner of trial and error to ensure that the selected two 

subject groups could reflect the various cardiovascular statuses of the represented subjects, 

which was verified through the independent t-test (Table 2-2). We further excluded the noise 

interference likely induced from basic physiological parameters and other uncommon 

cardiovascular diseases, e.g., coronary aneurysms on the pulse-wave characteristics (Fig. 2-

2). As a result, two high-quality pulse-wave datasets were successfully constructed for both 

the healthy- and CVD-subject groups with the essential features well captured and the high 

accuracy achieved in the prediction of the three cardiac function parameters. 

On a basis of the error analysis, we found that the CVD-group shows a relatively lower 

error level outperforming the H-group (Table 2-3; Fig. 2-7). It is reported that the CVDs or 
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risk factors normally cause specifically featured variations (Fig. 2-2) in pulse wave and 

cardiac function parameters [28][71], which in this study likely works positively to enhance 

the performance of the ML network-based training in clarifying the correlations between 

pulse wave and cardiac function parameters and hence improve the prediction accuracy. Yet, 

it is observed of a high accuracy for the H-group in terms of TPR and SV with an error level 

of less than 15%. This indicates that our ML model is of capability and validity in predicting 

the cardiac function parameters for different subject groups. 

Cardiac function parameters are common indicators of clinical examination, which can 

directly reflect the patient's cardiac state. Direct measurements of cardiac function 

parameters are usually implemented in an invasive manner along with expensive and precise 

medical devices. Such high clinical costs are thought to be a key reason to hinder many CVD 

patients from receiving timely diagnosis and treatment. The measurement of pulse waves 

however is normally non-invasive and processed conveniently at a much lower cost, which 

is patient-friendly. Recently, it turns to be even possible to capture/measure pulse wave 

signals with portable electronic devices such as the Apple Watch which enables 

physiological signal detection [72]. We foresee a trend that the hardware of various low cost 

while high precision portable devices capable to accurately measure pulse waves will emerge 

in near future. Therefore, the ML-based method capable of achieving accurate prediction of 

cardiac function parameters based on pulse wave could provide a feasible and effective 

software, which is of great clinical significance and importance in health monitoring and 

CVDs diagnosis. 

With respect to the limitations of this study, compared to previous ML-based studies on 

physiological signal analysis involving ECG, heart sound and et al. [73][74], a major 

limitation lies in the yet insufficiently large-size subjects and the related clinical information. 

In principle, given the comparatively large and strictly screened datasets, the proposed ML 
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model can create relatively high-quality pulse-wave datasets and accomplish a high-accurate 

prediction of the three featured cardiac function parameters. Here the limited datasets did 

bring challenges to our ML model: firstly, it was impossible to clarify whether the ML model 

is capable to classify the patients in terms of specific CVDs, e.g., of aneurysms, aortic 

stenosis and so on. A diagnostically important application of the current method may be the 

group classification of healthy and CVDs individuals while quantitatively evaluating the 

severity of specific CVDs, which will be explored in our future work when large-size 

datasets are available and more cardiac function parameters are increased to be predictable. 

In addition, because of the inherent difference between males and females in cardiac function 

and CVDs [75], [76], the correlations between gender and cardiac function owing to 

unbalanced sex distributions (Table 2) should be eliminated in future studies through 

constructing larger and balanced datasets. Moreover, the current ML model could not 

achieve the prediction on other cardiac function parameters, e.g., those parameters 

commonly used as the gold standard to diagnose CVDs such as fractional flow reserve (FFR) 

for detecting the myocardial ischemia [77], B-type natriuretic peptide (BNP) for monitoring 

heart failure [78], etc. It is also important to comprehensively assess the cardiovascular risk 

of patients through CV risk scales (e.g., Framingham Risk Score) [79] for CVD-specific 

classified patient groups, which is more clinically operable and complete rather than group 

classification merely through CVSs/high-risk factors. Thus, whether setting compare group 

according to different risk scales could achieve a better prediction performance needs further 

verification. In addition, it was hard to verify whether an increased training dataset can 

improve the prediction accuracy for AC and even other parameters. Therefore, with a high 

goal to apply our ML-based strategy and model for clinical applications, improvement of the 

prediction accuracy through optimizing and specifying the proposed ML methods with larger 

datasets and broad aspects of related clinical information will be our next research target. 
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2.5 Conclusion 

In this study, we proposed a ML strategy for the prediction of cardiac function 

parameters through pulse waves, which points to the feasibility and potential of the pulse 

wave-based prediction of physiological and pathological CVS conditions in clinical 

application. 
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Chapter III 

Machine learning-driven, pulse wave-based evaluation of the 

blood-supply capability of patients with heart failure   
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3.1 Introduction 

Heart failure (HF) has become a significant health concern affecting approximately 26 

million people worldwide, particularly older adults who normally require lifelong treatment 

[80–82]. HF is characterized as “a condition in which the heart cannot adequately pump 

blood to fulfill the body’s requirements” or “a condition leading to an abnormality in cardiac 

structure or function that results in the failure of effective oxygen transport for metabolic 

requirements” [80]. HF is clinically diagnosed using the Framingham criteria, which are 

primarily used in most research [83]. Because patients with HF have poor blood circulation 

throughout their bodies, most of them suffer from concurrent cardiovascular diseases from 

an early stage [84]. The cardiac chambers of patients with HF are generally morphologically 

remodeled, causing dysfunctions with a significant decline in the pump function of the heart 

and reduced blood-supply capability [85–88]. Consequently, the oxygen levels in the arterial 

blood vessels throughout the body decrease, showing symptoms, such as shortness of breath, 

fatigue, weakness, and decreased exercise capacity, which severely affect the patients’ daily 

lives and necessitate long-term medication to maintain normal daily activities [89].  

Patients with severe HF require hospital visits for prompt medical diagnosis and 

comprehensive evaluation by clinicians. Various physiological signals and medical images 

are normally obtained using medical devices, such as the echocardiography test, which is 

the most standard tool to assist physicians in assessing patients’ conditions every three to six 

months [90]. Digital imaging of cardiac chambers is crucial for evaluating the blood-supply 

capability in patients with HF, including the left ventricular ejection fraction (LVEF), left 

ventricular end-diastolic diameter (LVDd), left ventricular end-systolic diameter (LVDs), 

and left atrial dimension (LAD), because patients with HF show irregular characteristics of 

lower LVEF and higher values of LVDd, LVDs, and LAD [84][91]. However, 
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echocardiography tests are time consuming and expensive, posing challenges for patients 

with HF [92]. For instance, in the United States, even a 45 min to 1 h 

ECHOCARDIOGRAPHY test may cost approximately 2000 dollars for a patient, and it is 

unavailable for the daily monitoring of patients with HF [93–95]. When patients temporarily 

suffer from severe chest pain, fainting, weakness, arrhythmia, or severe shortness of breath 

[96], a timely diagnosis of their blood-supply capability to appropriately decide on a medical 

intervention is crucial to avoid overtreatment and prevent deterioration. Thus, it is necessary 

to utilize the limited medical resources for accomplishing real-time home health monitoring 

of patients with HF and providing them with a timely deterioration warning. 

Physiological signals, such as pulse waves, have been widely used for health monitoring 

and disease prediction [22,28,97–100]. Pulse waves provide vital physiological information 

associated with the blood supply capacity and delivery efficiency [26,44]. The non-invasive 

and convenient nature of pulse wave measurements allows the employment of various low-

cost home electronic devices for the initial diagnosis of cardiovascular diseases and related 

complications [101,102]. Considering that the abnormal heart chamber geometry typically 

observed in patients with HF alters the ejection fraction, ultimately impacting blood 

production and delivery efficiency [84], it would be an effective and patient-friendly tool to 

achieve non-invasive assessments of the heart's blood supply capacity through physiological 

and pathological information embedded in pulse waves. Such assessments provide 

significant potential for health monitoring and prevent disease deterioration in patients with 

HF. 
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Fig. 3-1 Schematic of blood-supply capability. RA: right atrium; LA: left atrium; RV: right 

ventricle; LV: left ventricle; SpO2: peripheral oxygen saturation; LVDd: left ventricular end-

diastolic diameter; LVDs: left ventricular end-systolic diameter; LVEF: left ventricular 

ejection fraction; LAD: left atrial dimension. 

 

Although quantitative analysis of pulse wave signals has been applied to certain cardiac 

functions or specific diseases [22,41,92], previous studies only targeted healthy subjects and 

other patients without HF. In particular, the quantitative evaluation of the pulse wave-based 

blood-supply capability of patients with HF remains unexplored [103]. Owing to the 

uncertainties caused by the noise and interference generated in the pulse-wave sampling 

process [104], such pulse-wave-based prediction of blood-supply capability is normally 

restrained by the limitations of conventional qualitative statistical methods [105,106]. To 
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establish a fast and non-invasive strategy for effectively predicting the blood-supply 

capability of patients with HF, we proposed a machine learning (ML)-based model in this 

study to predict five representative cardiovascular function parameters associated with the 

heart’s blood-supply capacity [107]. As illustrated in Fig. 3-1, the parameters, i.e., LVDd, 

LVDs, and LAD, directly evaluate the morphological condition of the heart chamber and the 

heartbeat functions at systole and diastole; the LVEF quantifies the ratio of blood supply 

from the heart; and the SpO2 determines the patient’s blood oxygen level at the end of the 

blood supply as well as the supply efficiency. It has been broadly recognized that the ML 

methodology has powerful and feasible capabilities in robust feature extraction [106,108–

112]. Remarkable achievements have been accomplished in various research fields, such as 

intelligent medicine, medical image processing, and autonomous driving, by integrating 

multiple basic features into complex features, enabling the mapping of the image or multi-

dimensional signal data onto different prediction targets [113–117]. Our previous study 

verified that the ML-based strategy enabled the fast and efficient prediction of cardiac 

functions based on peripheral pulse waves [118], demonstrating the high potential and 

capability of multilayer feature extraction in accurately predicting the relevant indicators for 

clinical application owing to ML methods. In this study, we further explored the capability 

and feasibility of ML-driven, pulse wave-based prediction of the blood-supply capability of 

patients with HF for clinical application. 

 

3.2 Methods 

3.2.1 Ethics approvals 

This study was approved by the Ethics Review Board of Chiba University Graduate 

School of Medicine in 2021, with an approval number M10089. The measurements of 
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clinical data complied with relevant guidelines and regulations. 

 

3.2.2 Clinical data acquisition and screening 

All data used in this study were obtained from 237 patients with HF and included raw 

extremity pulse wave data and relevant clinical, physiological, and pathological information. 

HF was diagnosed based on the Framingham heart failure diagnostic criteria [83]. All the 

participants were admitted to Chiba University Hospital between January 2019 and August 

2021. After the acute HF condition stabilized, blood pressure/pulse wave detection 

equipment (Omron 203RPEIII) was used to measure and record the pulse wave and blood 

pressure during the operation. The SpO2 was measured using a Nonin Onyx Vantage 9590 

Finger Pulse Oximeter (Nonin Medical Inc., USA). All patients underwent transthoracic 

echocardiography (Vivid E9; GE Healthcare, Horten, Norway) within one week before or 

after the pulse wave tests. The measured parameters consisted of LVEF, LVDd, LVDs, and 

LAD, and relevant clinical information (e.g., age and body mass index (BMI)) was also 

collected. None of the patients consumed spicy food or alcoholic drinks during 

hospitalization. 

 

3.2.3 Dataset creation 

As shown in Fig. 3-2, we performed rigorous data screening to ensure the quality of the 

data, and 215 patients with HF complied the following screening criteria: 1) the pulse wave 

data were collected from the left upper arm, 2) more than five valid pulse wave cycles were 

recorded, and 3) the five parameters (i.e., SpO2, LVEF, LVDd, LVDs, and LAD) associated 

with blood supply capacity were concurrently measured and recorded for each patient. To 

ensure the validity of the screened data, we applied the summary-independent sample t-test 
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method to implement a statistical analysis of the consistency of the data with previous studies 

[119–121], which were examined in terms of the mean ± standard deviation, resulting in p > 

0.05, thus a reasonable dataset [21,87,122].  

 

Fig. 3-2 Flow-chart of patient screening. Screening criteria: (1) six patients without complete 

pulse wave measurement were excluded, and (2) 16 patients without simultaneous 

measurement and recording of the five parameters were excluded. 

 

The pulse wave data preprocessing methods developed in previous studies [60,61] were 

employed to eliminate various noise and interference signals during the pulse wave sampling 

process: 1) using the averaged target pulse wave of over more than five valid heartbeat cycles 

in a steady state [63,64], wavelet transform decomposition was conducted to remove noise 

[28,118]; 2) according to Nyquist's theorem and the sampling frequency (1000 Hz), the pulse 
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wave sampling nodes were converted from 1000 to 100; and 3) normalization of the pulse 

wave amplitude was undertaken over a range of 0–100. A pulse wave dataset was created 

from the data of 215 patients with HF, which was further divided into training and testing 

datasets at a ratio of 9:1. The details of the dataset used for the machine learning analysis are 

summarized in Table 1. 

  

Table 3-1: Machine learning datasets for five parameters. 

Parameters SpO2 LVEF LVDs LVDd LAD 

Total number of 

included patients 
215 215 215 215 215 

Training set 193 193 193 193 193 

Testing set 22 22 22 22 22 

 

3.2.4 Machine learning network 

In this study, two machine learning (ML) network structures were employed and 

optimized, as shown in Fig. 3-3. It comprised a fully connected network and a densely 

connected convolutional network (DenseNet). A fully connected network is an efficient 

network that is widely used in various research fields [123,124]. A DenseNet is a recently 

proposed novel network that enables effective feature extraction and has high performance 

in terms of regression prediction tasks [125]. 

In the fully connected network, the input layer consisted of 100 neurons, which were 

identical to the sampling nodes of the input pulse waves. There were three fully connected 
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layers with 256, 64, and 16 neurons. The deepest layer was composed of one neuron, with 

five evaluation parameters selected separately as the output of five training times. Except for 

the input layer, the calculation process for each neuron in the (n+1)th layer of the fully 

connected network is described as 

 𝑂𝑢𝑡𝑝𝑢𝑡𝑛+1 = 𝐹(∑  
𝑚𝑛
𝑗=1 𝑊𝑗

𝑛+1𝑂𝑢𝑡𝑝𝑢𝑡𝑛 + 𝐵𝑛),                                                (1) 

where F denotes the activation function ReLU, which was introduced to alleviate 

gradient vanishing during ML training and to accelerate the convergence of loss functions 

[126]. 𝑚𝑛 and 𝐵𝑛 are the number of neurons and the bias in the nth layer, respectively, and 

𝑊𝑗
𝑛+1 is the weight of the jth neuron in the nth layer. 

The DenseNet shared the same input and output layers as in the fully connected network 

and utilized three dense block modules to connect all the layers while transferring various 

features between the layers. The methodology was verified to be capable of effectively 

increasing the usage of data features and achieving high performance even with limited data, 

while avoiding overfitting [125]. The input and output of the (n+1)th layer (featured map) 

associated with the dense block module can be expressed as follows:  

 Output
𝑛+1 =  feature map = 𝐺𝑛( Output1,  Output2, … ,  Output𝑛),                          (2) 

where G denotes multiple operations including the ReLU, batch normalization, and 

convolution. 

The mean square error (MSE) was employed as a loss function to evaluate the two ML 

networks combined with the Adam optimizer. The two ML networks were trained using 

TensorFlow (v2.0.0rc, Python 3.7) on an NVIDIA GeForce GTX 1660 Ti GPU. During the 

ML training, the utilization of different amounts of data associated with the back-

propagation algorithm for adjusting the parameter configuration of the network (e.g., the 

number of network layers and neurons) may lead to a decline in the loss function and an 
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alteration in the prediction accuracy. Thus, the network structure size was adjusted to ensure 

promising convergence in the loss function during network training. The Adam optimizer 

was chosen [66] under the following conditions: learning rate = 0.001, ε = 0.001, ρ1 = 0.9, 

ρ2 = 0.999, and δ = 1E−8, and the epoch parameter was set to 500. After training, each loss 

function curve and the relevant optimal configuration of the networks associated with the 

five parameters (SpO2, LVEF, LVDd, LVDs, and LAD) were recorded and stored. For 

testing, the ML-predicted parameters were used for statistical analysis and comparison with 

clinical measurements. 

 

Fig. 3-3 Structures of two machine learning networks. 

 

3.2.5 Performance evaluation 

Following previous studies [118,127,128], we employed the mean absolute percentage 



Dissertation, Chiba University 

 43 

error (MAPE) as the error function to verify the ML-based prediction for the test datasets.  

MAPE =
∑  𝑁

𝑛=1 |(𝑦𝑛−�̂�𝑛)
1

�̂�𝑛
|×100%

𝑁
,         (3) 

where 𝑦𝑛 and �̂�𝑛  are the clinical-measured and ML-predicted values of the five 

parameters, respectively, and n is the size number of the test dataset.  

In addition, the Bland–Altman method was used for consistency analysis of clinical 

measurements and ML-based predictions. The Bland–Altman can dissect the discrete trend, 

clustering tendency, and correlations of the five parameters between the two datasets of 

clinical measurements and ML-based predictions. When the five parameters fell within the 

allowable range, the two datasets were considered to have good consistency, and the two 

methods can be substituted for each other [47].  

3.3 Results  

After critical screening and preprocessing of the pulse wave data of the 237 patients 

with HF, a high-quality ML dataset was successfully constructed in a suitable manner for 

flexible input data formats and datasets. To ensure that the screened patients fit in the clinical 

statistics of the patients with HF associated with the five parameters (SpO2, LVDd, LVDs, 

LVEF, and LAD) for evaluating blood-supply capacity and the relevant clinical information 

summarized in Table 2, we conducted a summary-independent sample t-test based on the 

statistical results and a comparison with reliable data of previous studies [119–121]. Our 

results showed good consistency in terms of p value (p > 0.05) (Table 2) in the test analysis 

for the five parameters and other physiological information.  

 

Table 3-2: Characteristics of patients with heart failure (HF). 
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Characteristic

s 

Range Others’ reports p values 

Age (Years 

old) 
66.4 ± 16.4 68.0 ± 15.0 0.162 

BMI 24.2 ± 5.7 23.5 ± 3.9 0.076 

BPs 129 ± 35.4 133.0 ± 29.9 0.105 

BPd  80.2 ± 22.7 79.6 ± 18.6 0.703 

HR 76.8 ± 15.1 76.0 ± 14.0 0.447 

SpO2 96.9 ± 2.6 97.2 ± 1.8 0.501 

LVDd 56.8 ± 10.7 55.9 ± 14.9  0.604 

LVDs 46.5 ± 12.9 48.7 ± 11.9 0.153 

LVEF 38.3 ± 15.3 38.0 ± 15.0 0.779 

LAD 44.4 ± 9.1 42.3 ± 9.4  0.074 

Note: Data are presented as mean± SD. BMI: blood mass index (kg/m2); BPs: blood 

pressure systole (mmHg); BPd: blood pressure diastole (mmHg); HR: heart rate (beats/min). 
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Fig. 3-4 Illustration of DenseNet model-based learning curves. 

Five parameters were used to evaluate the blood supply capacity of the two selected ML 

structure models. During ML training, 10 network optimizations were accomplished, in 

which reduction in the loss function MSE resulted in a rapid and monotonous decline in each 

epoch. Using DenseNet as an example, as shown in Fig. 3-4, the MSE curves for every 
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evaluation parameter with a training epoch of 500 exhibited a constantly decreasing trend to 

the minimum level. This indicates that the relevant parameters and weights of the network 

were eventually optimized when the training process converged to a stable stage, which was 

then stored for ML-based testing. Moreover, the MSE curves of the fully connected network 

exhibited a decreasing trend, similar to that of DenseNet. In the test phase, both ML models 

outputted the predicted values for the five parameters within 1 s using the input of the pulse 

wave signals in the test set. 

 

Table 3-3: Comparison between the predictions of the two ML models for the values of the 

five parameters associated with blood-supply capability. 

ML networks Error function 

Predicted values 

SpO2 

 

LVDd LVDs LVEF LAD 

Fully connected 

network 

MAPE 

6.6 14.7 17.3 21.2 14.9 

DenseNet 5.6 12.9 14.6 18.2 12.0 

 

To examine and compare the prediction performance of the two network structures, we 

summarized the results of the error functions for the five parameters in Table 3. It is worth 

noting that all the errors were calculated based on the sample data in the corresponding test 

datasets, which were divided randomly for the error calculation. The larger the error, the 

larger the deviation of the ML predictions from the clinical measurements. Although the two 

ML models exhibited reasonably high performance for the selected parameter prediction in 

evaluating the blood-supply capability, the DenseNet achieved a better performance than the 
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fully connected network for all five parameters. In particular, the DenseNet exhibited higher 

performance (MAPE < 15%) for four parameters: SpO2, LVDd, LVDs, and LAD; the fully 

connected network had higher performance in three parameters: LVDd, SpO2, and LAD 

(MAPE < 15%); and both models predicted SpO2 more accurately (MAPE < 7%) than for 

the other four parameters.  

We further applied the Bland–Altman method to examine the consistency between the 

ML predictions and clinical measurements by analyzing the average values and mean bias, 

which were visualized in a scatter plot, as shown in Figs. 3-5 and 3-6, where the horizontal 

and vertical axes represent the average value and the difference (with a 95% distribution 

range, that is, the confidence interval), respectively. It is worth noting that good consistency 

between the two methods occurs only if the points within a confidence interval of the scatter 

plot account for more than 95% of all points, and the confidence interval does not exceed 

the range of critical values for clinical applications [129]. Most sets of the predictions of the 

two ML networks were within the 95% confidence interval. For the DenseNet, those 

excluding the sets of LAD were fell into the 95% confidence interval, other parameters (i.e., 

SpO2, LVDs, LVEF and LVDd) only had one set of data samples outside the 95% 

confidence interval. For the fully connected network, although the LVDs had two sets not 

within the 95% confidence interval, the other parameters (SpO2, LVDs, LAD, and LVDd) 

contained only one set outside the 95% confidence interval. Thus, the ML-network-based 

predicted results agreed well with the clinical measurements.  
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Fig. 3-5 Bland–Altman analyses between DenseNet-based predictions and clinical 

measurements for five parameters: SpO2, LVDd, LVDs, LVEF, and LAD. 
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Fig. 3-6 Bland–Altman analyses between fully connected network-based predictions and 

clinical measurements for five parameters of SpO2, LVDd, LVDs, LVEF, and LAD. 

 

3.4 Discussion 

In this study, for the first time, we applied a machine learning (ML) method to perform 

a non-invasive evaluation of blood-supply capability through pulse wave signals without 
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performing echocardiography in patients with HF. It was verified that ML networks have 

high potential and feasibility for achieving good performance in predicting five 

cardiovascular function parameters: LVEF, LVDd, LVDs, LAD, and SpO2. In clinical 

practice, patients with HF have various cardiac functions that distinguish them from healthy 

people, making it difficult for expert physicians to make a reasonable diagnosis. Therefore, 

the ML model-based evaluation methodology developed in this study can be used as a fast 

and effective tool to assist physicians in providing patient-specific diagnoses and medical 

treatments. Moreover, LVEF and LAD are crucial factors for physicians to determine the 

indication for treatment; for instance, patients (less than 40%) with LVEF are normally 

recommended to use cardioprotective medications, whereas LAD is important for ablation 

therapy in patients with HF having atrial fibrillation [80].  

The dataset used in this study were collected only from patients with HF without 

information on healthy subjects, and physiological information such as age and other 

cardiovascular function-related parameters may interfere with pulse wave signals after data 

screening, as pointed out by Scolletta et al. in a study of the correlation between pulse waves 

and LVEF [130]. To resolve the issue on methodological consistency associated with the 

ML model-based analysis, we performed a summary sample t-test to validate the filtered 

data-based results with reliable datasets. The DenseNet model achieved a high-prediction 

performance owing to rigorous data screening, which was verified to be capable of 

successfully ruling out the potential interference of numerical discrepancies in the datasets 

used for ML analysis, thus ensuring the validity and quality of the datasets. 

Clinical measurements of blood supply capacity parameters are normally performed 

using various expensive and high-tech medical devices under the guidance and operation of 

highly skilled technicians, which likely hinders patients with HF from receiving timely 

diagnosis and monitoring. Although configurations of ML networks, such as epochs, batch 
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size, and the Adam optimizer, require a considerable amount of training and testing, as well 

as manual adjustments to improve the prediction accuracy and performance, the ML-based 

strategy proposed here can reduce the time, cost, and usage of medical devices. In addition, 

recent portable and multifunctional electronic devices such as smartwatches and 

smartphones have been innovating non-invasive measurements of various physiological 

signals in a more convenient and cost-effective manner [72,131–133]. Therefore, using these 

portable electronic devices, the pulse-wave-based ML methodology proposed here could 

provide an inexpensive and patient-friendly tool to achieve fast and accurate evaluation of 

the blood supply capacity of patients with HF for real-time monitoring and diagnosis.  

The pulse-wave-based ML strategy was verified to have high clinical potential and 

feasibility. Based on the pulse wave signals of 237 patients with HF, together with clinical 

information on their heart’s blood-supply capability, a high-quality dataset was constructed 

after rigorous data screening and preprocessing of the pulse waves. Using five selected 

cardiovascular function parameters: LVEF, LVDd, LVDs, LAD, and SpO2, which were 

based on pulse waves using the fully connected network model and DenseNet model, the 

non-invasive predictions agreed well with the clinical measurements. The prediction 

performance, which was evaluated through statistical analysis in terms of the error function 

and consistency, indicated that the proposed ML model achieved a highly accurate prediction 

(MAPE < 13%) for LVDd, LAD, and SpO2. 

The limitations of this study were mainly caused by the insufficiency of datasets in terms 

of the clinical parameter scope and data quantity in comparison with previous studies of HFs 

or physiological signal analyses [73,134,135]. Although we had a comparatively large and 

rigorously screened dataset, it was difficult to interpret whether the classification of patients 

with HF considering specific cardiovascular diseases, such as arrhythmia or heart valve 

problems, could improve or reduce the prediction performance of the ML models. In addition, 
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other clinically important indicators, such as B-type natriuretic peptide, a hormone produced 

by the heart in response to increased pressure and volume that is commonly used for 

diagnosing patients with HF [58], have yet to be considered. In addition, the diversity of 

patients with HF may also be an essential factor affecting the generalizability and flexibility 

of our findings, because this study used patient data collected only from a single institution, 

and pulse wave signals were obtained from the same device. The demographic and clinical 

characteristics of the patient population [136] may alter the prediction performance of the 

ML methodology. To explore real-time health monitoring and deterioration prevention in 

patients with HF, our future task will focus on the optimization of the proposed ML networks, 

the use of larger datasets for training and testing, and incorporation of relevant clinical 

information.  

 

3.5 Conclusion 

In this study, we developed a novel ML-based strategy to achieve non-invasive and 

accurate evaluation of blood-supply capability in patients with HF based on pulse waves. It 

was verified that the ML-based prediction was capable and feasible for real-time health 

monitoring and deterioration prevention in patients with HF.  
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Chapter IV 

Hemodynamic prediction of 3D carotid artery stenosis pre- and 

post-surgical treatment using deep learning 
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4.1 Introduction 

Stroke is a high-risk medical condition that seriously threatens human life. For the 

adverse consequences of stroke, brain cells and tissues can degenerate or die within a few 

minutes owing to insufficient oxygen and nutrient provision caused by the interruption or 

reduction of the blood flow from the carotid artery flow to the brain [137,138]. Stroke can 

be of two types based on the causality: ischemic stroke and hemorrhagic stroke, and 

according to clinical statistics, ischemic stroke accounts for a large proportion (about 87%) 

[139,140]. The primary reason for ischemic stroke is the blockage of the common carotid 

artery (CCA) or internal carotid artery (ICA) induced by atherosclerosis, also known as 

carotid artery stenosis (CAS), which causes intracranial reduced blood supply [141–143] 

and usually requires revascularization surgery to prevent ischemic stroke for the patients 

with severe CAS. Revascularization surgeries for CAS mainly include carotid 

endarterectomy, carotid angioplasty, and carotid stenting [1–4]. While the operating 

procedures of these three surgeries are different, i.e., by removing the plaque through surgery, 

temporarily expanding the stenotic lumen with a balloon, and placing an adaptive vascular 

stent after balloon dilation, respectively, the ultimate goal of the three surgeries is to enlarge 

the flow cavity enabling blood flowing through the stenosis to improve the insufficient blood 

supply problem for preventing ischemic stroke [5–7,144]. The clinical diagnosis and 

postoperative prognosis of these surgeries often need to be guided by multiple hemodynamic 

variables such as pressure, velocity and wall shear stress [48,145], which are utilized to 

diagnose the severity of CAS and evaluate the surgical effect. 

To accurately predict the hemodynamic characteristics for the diagnosis of 

cardiovascular diseases and the prognostic assessment of various revascularization surgeries, 

computational fluid dynamics (CFD) has now been widely used as an efficient method [8–

11,48,146]. CFD modeling is normally conducted in three-fold [147]: (1) pre-processing to 
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construct three-dimensional (3D) anatomic/geometric models based on medical images of 

CT, MRI, etc. and to discretize computational domain; (2) computation of flow fields in 

terms of pressures and velocities by solving the Navier-Stokes equations under certain 

boundary conditions [11,148–151]; and (3) post-processing to visualize flow fields while 

calculating hemodynamic parameters such as wall shear stresses. Thus, the CFD-based 

simulations are of high computational cost due to the requirements of mighty computing 

resources, large-scale computing time, and highly skilled experts [12,13]. Moreover, the 

simulation is generally performed in a patient-specific manner by using the image-based 

geometric model for each individual under specific boundary conditions, which needs to be 

conducted for all patients and is usually very time-consuming [10,152–155]. Thus, it is a 

crucial issue to pay the expensive computational costs for real-time simulations of complex 

blood flows in association with the realistic clinical applications of CFD methods for surgical 

treatments such as CAS. 

Given the powerful feature-extraction capabilities in multidomain regression and pattern 

recognition, both machine learning (ML) and deep learning (DL) methods have shown 

successful applications in various fields, such as physiological signal diagnosis, medical 

image separation, smart medical care, etc [22,53,113–116,118]. The ML and DL-based 

methodology is also considered as an alternative to the CFD method for blood flow analysis 

[156] because it is of high potential to implement the mapping of anatomic geometries and 

CFD-driven flow fields, which enables accomplishing fast and accurate hemodynamic 

prediction for clinical applications. Recently, the ML/DL models have been verified capable 

of predicting the reduced-order simulation results in a computationally inexpensive way 

when merely employing some limited flow information, i.e., the velocities and pressures at 

the centerline or cross-section of a vessel [18,157,158]. However, from the viewpoint of 

clinical applications, an accurate prediction of the detailed information on 3D and transient 
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local flows before and after surgical treatments is needed to provide sufficient clinical 

references for surgery-decision making, which remains poorly studied yet. With a high goal 

of the diagnosis of CAS disease and the effect prognosis of surgical treatments, we applied 

the DL methodology to the CAS disease to accomplish a fast and accurate prediction of the 

hemodynamic characteristics in association with carotid stenotic artery before and after the 

surgical operation due to the flow cavity variation. With consideration of the intense vortical 

flow structures induced by the complex morphology of carotid bifurcation and stenosed 

carotid arteries [159,160], a flexible data format is thus employed, which is capable of 

accurately mapping both the carotid artery geometry and the complicated flow field. 

The data format utilized in DL and ML methods is usually given in terms of pixels or 

voxels to deal with the irregular shape and connectivity information, which has resolution 

limitations in accurately representing the complex arterial geometry and hence reasonably 

predicting the CAS hemodynamics via CFD simulations [23,24]. While there still exists the 

accuracy issue in the boundary representation (BRep) with smoothened boundaries, the point 

cloud dataset has the advantage of being easily generated through converting and 

transforming from a 3D scanned dataset by means of CAD conversion software (e.g., 

Solidworks, USA) [161]. The point-cloud data format enables the characterization of both 

complex geometry of the vessel model and the complicated flow fields with high resolution; 

and the high-density point cloud capable of conducting potential feature-extraction can be 

achieved with a small size dataset [53,110,162,163]. Furthermore, a novel DL network can 

be employed using dual input-sampling channels, which enables the high-performance 

analysis and establishment of the correlation between arterial geometries and velocity and 

pressure fields through abstracting and incorporating global and local characteristics of the 

point cloud dataset [53,110]. 

In this study, a total of four point-cloud datasets were established and utilized to validate 
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the CFD simulations and perform the hemodynamic prediction of the CAS models before 

and after surgical treatments in terms of the flow cavity variation. To match the CFD-based 

point cloud datasets, we employed a DL network with dual input-sampling channels. After 

the DL training, the optimal weight configurations were stored for the DL-based 

hemodynamics prediction of the CAS in the testing process. Compared with previous studies, 

the evaluation of prediction performance and the DL analyses indicated that the DL strategy 

proposed here enables uncovering the association between transient blood flow 

characteristics, including velocity and pressure fields and artery cavity geometric 

information before and after surgical treatments of CAS. A remarkable reduction of 7200 

times is achieved in the computational cost, and the DL-based predictions are well consistent 

with the CFD simulations in terms of mean velocity in the stenotic region for both the 

preoperative and postoperative datasets. Our study thus points to the potential and feasibility 

of the CFD-driven, DL-based methodology in predicting the 3D and transient 

hemodynamics associated with CAS before and after treatments, which may provide an 

effective and useful tool for the diagnosis of ischemic stroke and prognosis of surgical 

treatments. 

4.2 Methods 

4.2.1 Ethics approvals 

This prospective investigation was carried out following the principles outlined in the 

Declaration of Helsinki and aligned with medical ethics standards. The research received 

approval from the Ethical Review Committees of Beijing Friendship Hospital, 

demonstrating compliance with ethical requirements All measurements and collection of the 

data were carried out under relevant regulations and guidelines. We obtained signed 

informed consent forms. 
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4.2.2 Clinical data collection 

All clinical data used in this study were taken from Beijing Friendship Hospital. The 

raw CTA data of the carotid artery for 298 subjects who visited Beijing Friendship Hospital 

in 2021 and 2022 to examine the cerebral and carotid arteries were collected and collated by 

professional clinicians at 128-CT (Brilliance iCT, Philips Health care, The Netherlands). In 

addition, technicians reconstructed 3D anatomic models by importing CT images into 

MIMICS 20.0 (MIMICS, Leuven, Belgium) for arterial segmenting and repairing. 

Eventually, 280 3D geometric models with no stenosis of carotid bifurcate arteries were built 

up, and among them 18 heterogeneous cases were excluded due to incomplete information. 

 

Table 4-1: Geometric parameters of carotid arteries and stenoses 

Parameter Description Range 

Diameter of CCA 
Increased or decreased the diameters of the 

original artery uniformly 
6.7-9.0 mm 

Diameter of ICA 
Increased or decreased the diameters of the 

original branch artery (for brain) uniformly 
4.6-6.3 mm 

Diameter of external 

carotid artery (ECA) 

Increased or decreased the diameters of the 

branch artery (for face and ears) uniformly 
3.8-5.2 mm 

Bifurcation angle 

between ICA and CCA 

The angle formed by the two branches in 

the first 10 mm of their course was 

measured 

20–120° 

Stenosis location Random positions on ICA and CCA  

Number of stenosis ICA and CCA 1-2 
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Stenosis severity Severity of stenosis 0-80% 

Stenosis length 
The length of the stenosis on the ICA or 

CCA 
5-20 mm 

3.2.3 Preoperative and postoperative CAS models 

It was difficult to perform accurate and efficient DL analyses on the hemodynamic 

characteristics in association with geometric features of carotid artery stenosis (CAS) by 

using the mere 280 realistic carotid artery models. Moreover, most patients were found not 

suffering from surgery treatment for CAS. On the other hand, it has been recognized that the 

key parameters significantly impacting the CAS hemodynamics consist of the diameter of 

common carotid artery (CCA), the diameter of internal carotid artery (ICA), the diameter of 

external carotid artery (ECA), the bifurcation angle between ICA and CCA, the stenosis 

location, the number of stenoses, the stenosis severity, and the stenosis length [164–167]. 

 herefore, with the clinicians’ agreement and on a basis of the 280  A models, we 

reconstructed more models artificially through adjusting these SEVEN parameters as 

summarized in Table 1, and substantially built up 1000 geometric models. It is worth noting 

that for the 1000 geometric models, the CAS models were then constructed by randomly 

changing the stenosis-related parameters within a given range (Table 1) using the modeling 

software SolidWorks 14.5 (Solidworks, USA), substantially resulting in a dataset of 1000 

CAS models.  
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Fig. 4-1 Geometric model and boundary conditions of the carotid bifurcated artery. A. 

Geometric model of carotid bifurcate artery with branches CCA, ICA and ECA; B. Unsteady 

boundary conditions comprising a mass flow rate profile at CCA inlet and a pressure 

waveform at ICA and ECA outlets [168,169] 

 

4.2.4 CFD simulation of CAS before and after surgical treatments 

After geometric model augmentation, we carried out CFD simulations to resolve the 

flow fields and make the hemodynamic prediction for the 1000 CAS models (Fig. 4-1-A). 

The blood flow was treated as an incompressible, laminar, and Newtonian viscous fluid with 

the density of 1060 kg/m3 and the viscosity of 0.0035 Pa·s [168,169]. All arterial walls were 

treated as rigid boundaries and the nonslip condition was imposed. The commercial software 

ANSYS-Meshing was utilized for discretizing the computational domains in terms of a 

tetrahedral mesh with a minimum size of 0.0455 mm. The mesh independency convergence 

analysis was conducted in terms of the minimum mesh spacing adjacent to the walls and the 
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mesh number, and it was verified that the results (See details in the Results section) were 

well consistent with the previous studies [168]. 

At the inlet of the CCA models, a pulsatile mass flow rate profile (Fig. 4-1-B) with the 

waveform taken from the previous studies [168,169] was defined, which was spatially 

uniform while pulsating with time. A transient pressure waveform was simultaneously 

imposed at the outlets of the ECA and ICA. Given the dimension of the CCA part with a 

cross section area of 45.23 mm2 and a diameter of 7.318 mm, and the average flow velocity 

in a cardiac cycle (Fig. 4-1-A), the Reynolds number was calculated to be approximately 

346. It is worth noting that a peak Reynolds number based on the peak mass flow rate (0.182 

kg/s) among all our models was approximately 2200. The numerical simulations were 

performed with ANSYS-CFX 16.0 (ANSYS, Canonsburg, USA) by solving the unsteady 

Navier-Stokes equations and the continuity equation. The time step was set as 0.01 s, and 

the maximum iteration number was set to 200 for each time step, which was confirmed 

capable of ensuring a numerical convergence with the residuals less than 10−4. In addition, 

all the simulations were performed up to four cardiac cycles, when the flow field was 

confirmed to reach a stable and converged state. The results of the fourth cycle were used 

for further hemodynamic analysis. 

 

4.2.5 Creation of DL datasets 

This study is attributed to developing a DL strategy to implement the mapping of 

anatomic geometries and CFD-driven flow fields to achieve the hemodynamic prediction of 

3D carotid artery stenosis (CAS) before and after surgical treatments. Thus, both creations 

of the DL datasets and the construction of a suitable DL network play crucial roles. Therefore, 

the point cloud data were employed herein to characterize the 3D CAS models (mesh nodes). 
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The point clouds of two types were extracted from the CFD-based results, representing the 

geometric features of the CAS cavity and the hemodynamic characteristics, respectively. A 

suitable DL network with dual input and sampling channels was then developed and 

employed for the DL analysis.  

Because the flow field data comprising velocities and pressures at each mesh obtained 

through ANSYS software can be directly converted into a high-density point cloud data, we 

extracted all the CFD results at the instant of 0.21 s, i.e., the systole peak of the fourth cycle. 

We then established two types of point clouds, namely, the cavity point cloud {N1*P1} 

extracted from the innermost layer of the carotid artery wall (i.e., geometric information of 

flow cavity) and the fluid point cloud {N2*P2} extracted from the inside of the CA model. 

Here, N1 denotes the total number of grids in the lumen shell, P1 denotes the coordinate 

information of the carotid lumen, N2 denotes the total number of grids of the internal fluid, 

and P2 denotes the comprehensive properties of the internal fluid, including the information 

of spatial coordinates and flow fields of velocity and pressure. 

In general, any variations in the 3D CAS models would alter their wall surface meshes 

and hence the mesh distributions in the computational domain, substantially resulting in the 

change of the spatial distribution of point cloud. The point cloud data thus consists of both 

the geometric information of the spatial coordinates (x, y, z) and the corresponding CFD-

based flow field information of velocities and pressures, which can be collected and stored 

simultaneously at each discrete point of the point cloud data [53,110,170]. 

Based on the treatment condition and flow field information, we built up four datasets 

of the CAS models in terms of either velocity field data or pressure field data, with two 

preoperative datasets for before surgical treatment and two postoperative datasets for after 

surgical treatment with the cavity geometry changed, which are summarized in Table 2. All 

samples in the four datasets contain both fluid point clouds and cavity point clouds. After 
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the establishment of the four datasets, we randomly divided each dataset into a training set 

and a testing set by a 9:1 ratio for DL analysis. Thus, each training set includes 900-point 

cloud sets from CFD simulation results, and each testing set includes 100-point cloud cases. 

These four datasets were used for training and testing in four independent DL networks.  

 

4.2.6 DL network 

According to the characteristics of the established point cloud datasets, we employed a 

matching dual-input-sampling channel DL network. As shown in Fig. 4-2, the network has 

two inputs and sampling channels that receive and process the overall outer cavity and inner 

fluid point clouds of the carotid artery model, respectively. For the sampling module, to 

enhance the correlation between the point clouds of the two channels while improving the 

network prediction performance, the first two feed-forward fully connected layers, i.e., FC1 

and FC2 (Fig. 4-2) are utilized to share the weights, i.e., the same preliminary feature 

extraction method. After the step of FC2, the two types of point clouds enter their respective 

independent feed-forward fully connected layers, i.e., FC3 and FC4 (Fig. 4-2). They are used 

to extract the overall features from the outer cavity point cloud and to characterize the flow 

field information from the inner fluid point cloud. After being processed by the sampling 

module, the characteristics of both outer cavity geometry and the inner fluid flow are 

extracted as 512-dimensional {N1 * 512} and 128-dimensional {N2 * 128}-dimensional 

vectors, respectively, which are first encoded in the feature stitching module as a {N3 * (512 

+ 128) = 640} dimensional vector. Then, the dimensional vector {N3* (512 + 128) = 640} 

containing the two characteristics in the output module (FC5 and FC6) is decoded into {N2, 

P2}, i.e., the flow field information of the internal fluid, which functions as a convolutional 

neural network decoding operation. By employing the network with the two matched point 
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clouds to bridge the fluid's overall cavity and spatial coordinates, the flow field data of 

velocity and pressure at each point, can be substantially determined. 

 

Fig. 4-2 Structure of the proposed network. 

With the utilization of a dual-channel rather than a single-channel and sharing weights 

in the fully connected layers instead of nonshared weights, Li [53] investigated the prediction 
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performance through testing with control variables in previous work. Here, we focused on 

the feature extraction and processing point clouds over the network. We added a max pooling 

part in the sampling module as a symmetric function (Fig. 4-2) to resolve the disorder issue 

of the input point clouds [162,171]. In addition, the mean absolute error (MSE) was chosen 

as the loss function; the Adam optimizer was utilized as a learning rate=0.001, ε=0.001, 

ρ1=0.9, ρ2=0.999, and δ=1E−8 [22,66]. 

 

4.2.7 Network training and testing 

Four DL datasets were trained separately using independent networks in the 

environment of TensorFlow (v2.0.0rc, Python3.7) on an Nvidia GeForce GTX 1660 Ti GPU 

with a batch size of 1 and epoch of 1000. In the training phase, we stored the optimal weight 

configuration by optimizing the loss function to the minimum value, which resulted in four 

trained networks for the DL prediction at the testing stage. For the testing phase, the 

hemodynamic results of fluid points in P2 were predicted by only importing the spatial 

coordinated information of the cavity point cloud in P1 and the spatial coordinate information 

of the fluid point cloud in P2 using the stored optimal configuration. 

 

Table 4-2: Four DL datasets 

Stage Hemodynamic Training number 
Testing 

number 

Preoperative 

Velocity 900 100 

Pressure 900 100 

Postoperative 
Velocity 900 100 

Pressure 900 100 
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4.2.8 Evaluation of prediction performance 

To quantitatively evaluate the difference between the DL-predicted results and the CFD 

simulation results, we drew on previous studies to employ the mean radial error (MRE) and 

the normalized mean absolute error (NAME) to determine the error at each mesh point 

[24,53,110]. MRE can characterize the error of the DL prediction value relative to the actual 

value at all query points of the model. The NMAE can characterize the error of the DL-based 

result relative to the actual value of the overall flow field (CFD result). The definitions of 

MRE and NAME are given in Equation (1) and Equation (2): 

𝑀𝑅𝐸(𝑦, �̂�) =
1

𝑁2

∑ √(𝑦𝑖−�̂�𝑖)2𝑁2
𝑖=1

√𝑦𝑖
2

× 100% ,     (1) 

𝑁𝑀𝐴𝐸(𝑦, �̂�) =
1

𝑁2

∑ |𝑦𝑖−�̂�𝑖|
𝑁2
𝑖=1

𝑀𝑎𝑥|𝑦|−𝑀𝑖𝑛|𝑦|
× 100%,       (2) 

where 𝑦𝑖 and �̂�𝑖 denote the i-th inner fluid point values of pressure or velocity obtained 

by DL-predicted values and CFD-simulated results, respectively. i is the point spatial 

sequence. N2 is the total number of fluid point clouds. Max|y| and Min|y| represent the 

maximum and minimum magnitudes of the corresponding hemodynamic parameters among 

all points in the selected area, respectively. 

4.3 Results 

First, the mesh convergence analysis was conducted by investigating the mesh 

independency of the CFD simulation in terms of minimum mesh spacing adjacent to the wall 

and mesh number. For the sake of simplicity, a stenotic carotid artery model, as shown in 

Fig. 4-1-A, was used for the mesh convergence analysis. It was verified that a minimum 

mesh spacing/size of 0.0455 mm of the tetrahedral meshes at the wall surface was good 

enough to capture the hemodynamic characteristics of the flow field accurately; and the mesh 

number exceeding 1.2 million could achieve a marginal difference in association with the 
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velocity magnitude at the systole peak (Fig. 4-3), less than 3% with increasing the mesh 

number. With consideration of the balance between numerical accuracy and computational 

cost for the CFD simulation, we thus selected the number of mesh nodes (point cloud) 

ranging from 0.18 to 0.25 million, identical to a mesh number exceeding 1.2 million in total 

across different cases, which were verified capable of accurately and effectively representing 

the geometric features and flow field details of the CAS models. 

 

 

Fig. 4-3 Mesh convergence analysis in terms of mesh independency associated with a 

specific velocity at the systole peak of the fourth cycle. 
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Fig. 4-4 Comparison of simulated mass flow rates at two outlets with published data [168]. 

 

Because the DL analyses in terms of accuracy and validity are highly dependent upon 

the data quality, particularly in the present case of the unsteady flow field, which could exert 

a significant impact on the point cloud data converted by CFD simulation results. Therefore, 

we validated the time accuracy of the CFD simulation through a comparison of the mass 

flow rate at the ICA and ECA outlets in Fig. 4-4. The current CFD-based results are in 

reasonable agreement with reliable published data [168] in terms of the time-varying mass 

flow rates at the two outlets of the carotid model even though some noticeable differences 

exist in the amplitudes mainly due to the discrepancy in the two models. 
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Fig. 4-5 Comparison of pressure fields between CFD simulation and DL prediction. A. 

Carotid stenotic artery model; B. Carotid artery model without stenosis (cavity changed 

model).  
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Fig. 4-6 Comparison of velocity fields between CFD results and DL prediction. A. Carotid 

stenotic artery model; B. Carotid artery model without stenosis (cavity changed model). 
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Fig. 4-7 Comparison of averaged velocities in the vicinity of stenosis between DL- and CFD-

based results. A. Scatterplot of averaged velocities for preoperative models in terms of 

Velocity-CFD and Velocity-DL. B. Scatterplot of averaged velocities for postoperative 

models in terms of Velocity-CFD and Velocity-DL. 

 

We then randomly selected a preoperative model and a postoperative (cavity changed) 

model from the testing sets as samples to intuitively illustrate the predicted hemodynamic 

results in terms of pressure and velocity distributions of the maximum inflow rate (t = 0.21 

s in Fig. 4-1-B) as illustrated in Figs. 4-5 and 4-6. It is observed that both the pressure fields 

(Fig. 4-5) and velocity fields (Fig. 4-6) associated with the CAS model and the normal 

carotid artery model (i.e., the cavity changed model) display excellent consistency between 

the CFD-based and DL-predicted results.  

 

Table 4-3: Error functions of pressure and velocity fields 
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Types Locations 
Hemodynamic 

Parameters 
NMAE MRE 

Preoperative 

Whole Model 

Pressure 3.34 ± 1.31 6.47 ± 1.42 

Velocity 4.53 ± 1.45 8.03 ± 1.57 

Stenosis 

Pressure 6.31 ± 2.72 10.42 ± 3.69 

Velocity 7.16 ±1.50 11.48 ± 3.86 

Bifurcation 

Pressure 5.34 ± 1.69 10.63 ± 2.64 

Velocity 6.88 ± 2.25 12.35 ± 3.61 

Postoperative 

Whole Model 

Pressure 1.77 ± 1.12 3.81 ± 1.47 

Velocity 2.83 ± 1.33 4.29 ± 1.67 

Bifurcation 

Pressure 3.91 ± 2.39 7.87 ± 2.05 

Velocity 5.47 ± 1.74 9.73 ± 2.60 

 

In addition, we summarized the error function results of the velocity and pressure fields 

in Table 3 in terms of the mean radial error (MRE) (Equation (1)) and the normalized mean 

absolute error (NAME) (Equation (2)) to investigate the error at each mesh point of the 

testing set models. Except for the overall error, we also segmented the narrow stenotic 

portion of the CAS model and calculated the corresponding errors. The error function results 

indicate that our DL method can achieve reasonable and effective hemodynamic prediction 

with the maximum error of less than 12.5% throughout the flow field inside the CAS model. 

The prediction errors for the pressure field are noticeably lower than those of the velocity 

field, which may be due to the DL-based prediction of the three velocity components at each 

point can significantly increase the computational cost associated with the corresponding 
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network, substantially leading to high errors. Besides, the errors of the stenotic models are 

noticeably larger than the normal carotid artery model (the cavity changed model), probably 

because of the complex transient flow structures in the vicinity of the stenosis, which may 

lower the DL-based prediction accuracy. With respect to the computational cost between 

CFD simulation and DL-based prediction, it is obvious that the DL method is superior, which 

enables the prediction to be accomplished within merely 1 second. The CFD simulation that 

comprises the pre-processing of the geometric CAS modeling, the numerical simulation for 

four beat cycles, and the post-processing of the computed results, however, being run at Intel 

Core I5-9400 2.9 GHz × 4 CPU, takes approximately 2 hours on the server, indicates that 

the computational cost of the CFD simulation can be reduced by approximately 7200 times. 

In addition, we carried out a consistent analysis of the DL- and CFD-based results to 

examine the prediction performance and capability of clinical application. We calculated the 

averaged flow velocities, i.e., the mean values of velocities at all points of the narrowest 

cross-sections of the stenoses on ICA and CCA, based on the preoperative and postoperative 

testing set models. Correlations between DL- and CFD-based average velocities are 

compared in terms of Velocity-CFD and Velocity-DL, as depicted in Fig. 4-7 of the scatter 

plot of the preoperative models with r = 0.9471, P < 0.001 (Fig. 4-7-A), and the scatter plot 

of the postoperative models with r = 0.9584, P < 0.001 (Fig. 4-7-B), respectively. Obviously, 

good consistency is observed between the DL-based predictions and the CFD-based 

simulations equally in the preoperative and postoperative datasets.  

 

4.4 Discussion 

In this study, we proposed a DL strategy for the first time to predict the 3D and unsteady 

hemodynamics of stenotic carotid arteries before and after surgical treatments (i.e., cavity 
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change). Error analysis results show that the DL strategy can achieve high-accuracy 

hemodynamic prediction (ERR<12.5%) while reducing computational cost by 7200 times, 

which demonstrates the clinical potential and practical capability of the DL strategy in 

predicting complex hemodynamics for stenotic arteries while reducing the computational 

cost and simplifying the operation process. 

 

Table 4-4: Comparison of ML- and DL-based methods on hemodynamic prediction 

Method 
Predicting 

objective 

Subject 

number 

Data 

size 
Data format Performance 

Current DL-

based strategy 

3D CAS 

unsteady 

hemodynamics 
 

298 
 

1000 

High 

resolution 

point cloud 

MRE < 12.5%, 

NAME < 7.5% 

ML approach 

(Itu et al) 

Fractional flow 

reserve (FFR) 

value 

87 12000 
Geometric 

parameter 

Accuracy = 

99.7% 

Deconvolution 

Network (Guo 

et al) 

2D steady flow None 400000 

Low 

resolution 

pixels 

MRE < 3% 

CNNs model 

(Su et al) 

2D unsteady 

WSS 

distribution 

small 2000 

Low 

resolution 

pixels 

MAE < 2.5% 

DNNs model 

(Liang et al) 

3D thoracic 

aorta 

hemodynamics 

25 729 

Low 

resolution 

meshes 

NMAE<6.5% 

 

As summarized in Table 4, the previous studies on predicting flow fields or 

hemodynamic parameters based on ML or DL methods are limited to either 2D and reduced 
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models or simplified 3D models but with no applications to the complex CAS. Itu et al. 

reported an ML-based model to predict the FFR parameter [18] but with a reduced-order 

model, which is highly targeted but limited in its application scope. Guo et al. presented a 

deconvolutional network (CNN)-based model for the prediction of 2D and/or 3D flow fields 

[23] by developing a dimensionality-reduction model, however, which can cause the 

information loss of flow fields because the data normalization process introduces 

considerable noises, needing larger datasets and hence much more computational cost. By 

generating a large number of idealized blood vessel models based on a small size of clinical 

datasets and employing a convolutional neural network, Su et al. achieved the 2D real-time 

wall shell stress (WSS) prediction [172], but their model did not take account for the realistic 

spatial geometric information. Recently, Liang et al. built up 3D idealized thoracic aorta 

models but used merely 80,100 nodes for model segmentation and normalization of the 

human thoracic aorta [24], which was combined with a DL method. Even though a high-

resolution prediction of 3D hemodynamics was achieved, the small-scale dataset of subjects 

and the utilization of a fixed mesh set for different geometric models largely constrained the 

flexibility and accuracy of the simulations. 

Compared with previous ML- and DL-based studies, this study first manifested in larger 

clinical datasets, which could demonstrate better generality in terms of capabilities in clinical 

application. And besides, we used two formats of point cloud datasets that can flexibly 

characterize the stenosis/ cavity geometry and carotid flow fields while employing a double 

input-sampling network structure for feature extraction and 3D hemodynamic prediction. 

The mesh-independent test result demonstrated that it is sufficient to accurately characterize 

the geometry of stenotic carotid artery models at a suitable resolution. The variability of 

point clouds regarding quantity and spatial coordinates is conducive to accurately 

characterizing different complex models that vary from a preoperative artery to a 
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postoperative artery, which previous DL studies cannot handle. For instance, a stenotic 

model contained approximately 40,000 cavity points and 220,000 fluid points. And to match 

the point cloud’s characteristics, the employed D  network could extract the geometric 

information from the cavity point cloud while obtaining the hemodynamic information from 

the fluid point cloud. Specifically, the network was separately constrained by the global 

geometric features of the overall blood cavity while guided by the local hemodynamic 

information. Thus, the combination of the point cloud and the DL network could effectively 

introduce spatial relationships by stitching the two modules and then realizing point-by-point 

hemodynamic prediction of a carotid artery.  

For the ERR results, the stenotic model was higher than the cavity changed model (Table 

3), which may be due to the difference in the flow field and complexity of the narrow location. 

In our CAS models, the number of fluid points in the lesion area of the artery accounted for 

approximately 10% of the entire model, which means that the ERRs of the entire model was 

mainly determined by the stenosis part. In addition, flow field changes in the stenosis due to 

a narrow lumen, as well as secondary flow near the bifurcation site, lead to large changes in 

the flow field at the stenosis site. On the other hand, compared with the healthy model, the 

lesion model (CAS) has a larger range regardless of the velocity field and the pressure field, 

resulting in the ERRs in the stenotic part being more sensitive to flow field changes. Taking 

the above factors into consideration, the ERRs of diseased arteries, i.e., the CAS models, 

were higher than those of healthy arteries (the whole model), and the ERRs of the lesioned 

and bifurcated areas of the models were the highest. 

The limitations of this study mainly lie in the insufficient number of clinical patients 

and the related pathological information. These limitations are reflected in the following: 

First, 720 augmented models were constructed through morphological modification of the 

carotid artery models based on the original dataset of the 280 patients but without apparent 
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CAS features, which was conducted by adjusting the seven primary parameters of the 

diameters of CCA, ICA, and ECA, the bifurcation angle between ICA and CCA, the stenosis 

location, the number of stenoses, the stenosis severity, and the stenosis length base on. Thus, 

it is necessary to enlarge the original dataset by recruiting more patients with recognizable 

CAS diseases to enhance the efficiency, stability, and accuracy of the DL training analysis. 

Second, the lesion generated for constructing the stenotic artery is idealistic and thus ignores 

the diversity in stenoses such as asymmetric type, multiple contiguous types, etc. Therefore, 

a comprehensive analytical study on simultaneously validating the applicability and ability 

of our DL strategy for patients with different types of stenosis will be explored in our future 

studies by expanding the sample size of real clinical data. Third, instead of imposing 

personalized boundary conditions on each artery, we employed a general boundary condition 

for the CFD simulations and then selected only one time instant of the CFD results for the 

DL dataset generation. Moreover, owing to solely focusing on the cavity change while 

ignoring the influences of surgical treatments, we neither utilized the arterial models treated 

by carotid endarterectomy nor a balloon or a vascular stent for expanding the narrowed artery. 

Therefore, like the postoperative scars, the thickness of an actual vascular stent, and the 

interaction between stents and blood vessels that we did not include in our study [9], which 

in turn may impact the reasonably of hemodynamic results and lead to potential errors. 

Finally, our study only chose the artery portion near the carotid bifurcation as the object of 

interest. It did not account for the cerebral artery and facial artery parts downstream of the 

ICA and the ECA, respectively, as well as the cardiovascular artery upstream of the CCA, 

which will be evaluated in our future study.  

In summary, this study aimed to employ a flexible data format to represent high-

resolution geometric stenotic arteries while proposing a suitable DL network and 

substantially achieved an accurate prediction of hemodynamic results of carotid stenotic 
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arteries before and after surgical treatments. Therefore, with the high goal of applying our 

DL strategy to real-time clinical revascularization surgery guidance, improvement of our 

strategy prediction performance and applicability through optimizing our DL methods with 

larger datasets will be our next research target. 

 

4.5 Conclusion 

In this study, we proposed a simulation-based framework to achieve DL-based 

hemodynamic prediction of normal and diseased carotid arteries. Through establishing high-

quality point cloud datasets combined with an advanced DL network, the DL-based 

methodology is verified capable of achieving high accurate DL predictions, which are well 

consistent with computational fluid dynamic (CFD) simulations while dramatically reducing 

computational costs. This points to the capability and feasibility of  the DL-based strategy 

for fast and accurately predicting the hemodynamics of carotid artery stenosis (CAS) before 

and after surgical treatments. 
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Chapter V  

Conclusions and outlooks 
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5.1 Summary of contributions 

In this thesis, we propose novel machine learning (ML)- and deep learning (DL)-based 

strategies for the evaluation and treatment of cardiovascular diseases (CVDs). These ML 

and DL methods overcome the challenges that traditional methods cannot address, such as 

the unclear quantitative relationships between cardiac function and pulse wave signals, blood 

supply capability of patients with heart failure and pulse wave signals, and the high 

computational cost of computational fluid dynamic (CFD) simulations for obtaining the 

hemodynamics of carotid artery stenosis (CAS) before and after surgical treatments. 

In Chapter I, we introduce the harmful effects, diagnosis, and treatments of the 

cardiovascular diseases that we focus on with ML, DL, and CFD, especially the methods we 

employ for AI-based analysis. 

In Chapter II: For the first time, we propose an ML strategy that enables a fast yet 

accurate noninvasive prediction of cardiac function parameters based on pulse waves. The 

feasibility and potential of pulse wave-based prediction of physiological and pathological 

CVD conditions in clinical applications are revealed. Based on a database of 412 subjects, 

we selected three parameters - arterial compliance, total peripheral resistance, and stroke 

volume - as important indicators reflecting cardiac function. Two subject groups were 

created to represent different datasets. The independent sample t-test confirmed that our 

subject groups could represent the typical physiological characteristics of the corresponding 

population. Our ML model is validated through consistency analysis of the ML-predicted 

three cardiovascular function parameters with clinical measurements. The error analysis also 

proved its capability to achieve a high-accuracy prediction on TPR and SV for both the 

healthy-subject group (accuracy: 85.3%, 86.9%) and the CVD-subject group (accuracy: 

88.3%, 89.2%). 

In Chapter III: the promising potential of ML in predicting the blood supply capacity of 
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patients with HF through non-invasive pulse wave signal analysis was demonstrated. 

Utilizing a high-quality pulse wave dataset from 237patients with HF, we implemented and 

optimized two validated ML networks to predict crucial cardiovascular function parameters 

such as left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter 

(LVDd), left ventricular end-systolic diameter (LVDs), left atrial dimension (LAD), and 

peripheral oxygen saturation (SpO2). Statistical tests confirmed the consistency of our 

dataset with prior studies (p > 0.05), while error functions and Bland–Altman analysis 

demonstrated the accuracy and reliability of our ML models. This work highlights the 

significant clinical potential of ML methods in HF patient health monitoring and 

deterioration prevention, offering a novel, non-invasive approach for evaluating blood-

supply capability. 

In Chapter IV: the capability of the DL-based fast and accurate hemodynamic prediction 

of pre- and post-surgical treatments of CAS was underscored. Four point-cloud datasets 

generated from CFD simulation results for the prediction of hemodynamics in CAS pre- and 

post-surgical treatment models. A DL network with dual input-sampling channels was 

employed to align with the CFD-based point-cloud datasets. After training, the proposed DL 

strategy successfully unveiled correlations between transient blood flow characteristics and 

arterial geometry pre- and post-CAS surgery. Computational costs were remarkably reduced 

by 7,200 times, with DL-based predictions well-aligned with CFD simulations. This study 

underscores the potential of a CFD-driven, DL-based approach for predicting 3D transient 

hemodynamics associated with CAS pre- and post-treatment, offering a valuable tool for 

ischemic stroke diagnosis and prognosis of surgical treatments. 

5.2 Outlook 

In this thesis, AI approaches including ML and DL have been verified to play a crucial 
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role in the diagnosis and prognosis of cardiovascular diseases, assisting in health monitoring 

and treatment guiding. Our future work will focus on two primary aspects: the expansion of 

the dataset and the optimization of the network structure. 

For Chapter II and Chapter III, our first aim is to expand the dataset in terms of size and 

scope, incorporating a more diverse range of clinical parameters and patient demographics. 

This will enhance the generalizability and flexibility of our findings and may enable 

classification of heart failure patients considering specific cardiovascular diseases. We also 

plan to include clinically important indicators, such as B-type natriuretic peptide, which are 

currently absent from our dataset. Furthermore, we intend to refine our Machine Learning 

models, improving their accuracy and predictive capabilities for a broader range of cardiac 

function parameters. This involves the exploration of the group classification of healthy and 

cardiovascular disease (CVD) individuals while quantitatively evaluating the severity of 

specific CVDs. 

For Chapter IV, our goal is to develop a more comprehensive and realistic approach to 

our carotid artery stenosis (CAS) models. This involves expanding our original dataset with 

more patients having recognizable CAS diseases, considering diverse types of stenosis, and 

applying personalized boundary conditions for each artery in our simulations. We also aim 

to include the effects of real surgical treatments in our models, such as the thickness of a 

vascular stent, and the interaction between stents and blood vessels. Lastly, we plan to 

broaden our area of interest to other parts of the artery system, such as the cerebral artery 

and facial artery parts downstream of the internal carotid artery and the external carotid 

artery, as well as the cardiovascular artery upstream of the common carotid artery. 
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