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Abstract

As the scale of the power grid continues to expand, the human-based inspection
method is difficult to meet the needs of efficient power grid operation and mainte-
nance, for this reason, research and development of fully autonomous overhead line
inspection flight robot to achieve inspection of autonomous operations is of great
significance.

(1) In order to realize the combination of object detection technology and UAV,
a lightweight object detection model is designed based on YOLOv5. This model
can be easily deployed on embedded devices, which lays the foundation for applying
object detection technology to high-voltage power transmission line inspection.

(2) Aiming at the problems of low autonomy and low efficiency of intelligent
identification of existing UAV transmission line inspection, an intelligent inspection
system based on self-developed UAVs is designed, which improves the efficiency
of transmission line inspection, while successfully integrating the object detection
algorithm with the intelligent inspection system.

(3) In response to the problem that the target object deviates from the center of
the picture when the UAV is flying autonomously at high altitude to take pictures
of a specific object in (2), an autonomous UAV inspection system based on object
detection is developed to correct the deviation, which greatly improves the quality
of the dataset.

After a large number of flight verification, the intelligent inspection system
greatly improves the efficiency of transmission line inspection, shortens the inspec-
tion cycle, reduces the investment cost of inspection manpower and material re-
sources.

ii





1 INTRODUCTION

1 Introduction

1.1 Background

The power transmission line system is composed of a conductor system designed to
transport electrical power from a power generating station to various distribution
stations intended for residential and industrial purposes. While the underground
transmission configuration is deemed more eco-friendly, its installation cost is no-
tably higher than that of the overhead transmission system. As a result, overhead
power lines are predominantly utilized for electric power transmission on a global
scale1,2. These power lines which sometimes cut-across harsh environment (hot-
desert, mountainous ranges, thick forest, and water bodies) are installed on verti-
cally fixed towers using insulators, spacers, and dampers, among others3. Routine
inspection of power transmission lines for early fault detection and maintenance is
required for efficient and reliable transmission of high voltage power. The detec-
tion and location of transmission equipment faults is critical because it helps power
transmission companies to minimize maintenance costs and prevent unnecessary
outages4. As described in this paper5, in the United States, a half-hour outage can
cause an average loss of $15,707 to medium and large industrial customers, while
an eight-hour outage can cause a loss of nearly $94,000. In addition, the growing
global population and over-dependence on electricity supply necessitate the provi-
sion of effective strategies to examine power transmission lines. Figure 1-1 shows
the annual spending costs of the major U.S. utilities on their distribution systems,
and it can be seen that the annual spending costs are increasing each year.

Figure 1-1: From 2000 to 2018, major U.S. utilities have been spending progressively
more money on their distribution systems each year.6

Object detection stands out as one of the most fundamental and daunting prob-
lems in the field of computer vision, attracting extensive attention in recent years.
In the past two decades, we have witnessed remarkable technological advancements
in this field, which have profoundly impacted the entire domain of computer vi-
sion. If we regard current object detection technology as a deep learning-driven
revolution, then we would observe the astute contemplation and long-term strategic
design of early computer vision back in the 1990s7. Object detection represents a
crucial computer vision task that pertains to the detection of visual object instances
belonging to a specific category (e.g., individuals, animals, or vehicles) in digital im-
ages. The ultimate objective of object detection is to devise computational models
and techniques that offer one of the most basic pieces of knowledge that computer
vision applications require: what objects exist where? The two most vital metrics
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1 INTRODUCTION

for evaluating object detection algorithms are accuracy (inclusive of both classifi-
cation accuracy and localization accuracy) and speed7. Target detection serves as
the foundation for a multitude of other computer vision tasks, such as instance seg-
mentation8,9, image captioning10, and object tracking11. In recent years, with the
rapid growth of deep learning methods12, the advancement of target detection has
been considerably facilitated, leading to groundbreaking achievements and turning it
into an unparalleled research hotspot. Currently, object detection is widely adopted
in various real-world applications, including autonomous driving, robot vision, and
video surveillance. Figure 1-2 manifests the increase in the number of publications
related to ”object detection” over the last two decades.

Figure 1-2: From 1998 to 2021, the number of publications in the area of object
detection is increasing7.

1.2 Goals of the Thesis

In order to meet the demand for intelligent and unmanned inspection robots for
overhead line inspection, the fully autonomous overhead line inspection flying robot
developed in this work mainly contains a quadrotor UAV and an artificial intelli-
gence processing unit to perform operations; a cloud-based central station system
for autonomous planning of cruise routes, naming of inspection data management,
online fault diagnosis of returned data and remote operation; and an intelligent
nest to automatically replace the operating inspection flying The intelligent nest,
which is used to automatically replace and charge the robot’s battery, is composed of
three major parts. Mainly for the market existing inspection robot exist flight con-
trol stability, target object accurate collection, inspection robot intelligent recovery,
inspection full autonomy, urban transmission line safety inspection and inspection
data fault diagnosis and other problems to make certain technical breakthroughs.

1.3 Thesis Structure

By referring to domestic and international research on UAV transmission line in-
spection and object detection, analyzing and summarizing their advantages and
shortcomings, and combining the development trend of inspection UAV transmis-
sion line inspection and object detection, the design framework of this thesis is
proposed, as shown in Figure 1-3.

2



1 INTRODUCTION

Figure 1-3: The structure of the thesis

Chapter 1 introduces the research background and development trend of UAV
transmission line inspection and object detection. The importance of intelligent
transmission line inspection is emphasized.

Chapter 2 introduces the development history of object detection and UAV trans-
mission line inspection technology. In the new era of intelligent technology develop-
ment, the combination of object detection and UAV transmission line detection is
very necessary.

Chapter 3 designs a lightweight real-time object detector that can be deployed
on an embedded platform for better integration with UAVs and is capable of real-
time detection of grassland animals. This lays the foundation for the application of
object detection technology to power transmission line inspection.

In order to solve the problem of high cost and low efficiency of transmission line
inspection, Chapter 4 designs the automatic inspection system of UAV high voltage
transmission line. The design idea and realization method of each function module
in the system are also described.

Chapter 5 designs an autonomous UAV correction system based on object detec-
tion for the problem that the target object deviates from the center of the picture
in Chapter 4. This greatly improves the quality of the data set and lays a firm
foundation for later transmission line defect detection.

Finally, in Chapter 6, the design of this thesis is summarized, and the future
design and research of this system are prospected.
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2 Object Detection and UAV Power Transmission

Line Inspection: A survey

2.1 Object Detection

In this section, we present a comprehensive overview of the history of object de-
tection from various perspectives, including the evolution of milestone detectors,
datasets, metrics, and key technologies.

2.1.1 The Evolution of Object Detection

During the last two decades, it has been widely acknowledged that advancements
in object detection have been predominantly classified into two historical phases:
the ”traditional object detection phase (pre-2014)” and the ”deep learning-based
detection phase (post-2014),” as depicted in Figure 2-1. In the subsequent sections,
we will provide a comprehensive summary of the pivotal detectors in this phase,
utilizing the emergence time and performance as key indicators to emphasize the
underlying technology driving them, as illustrated in Figure 2-27.

Milestone: Traditional detectors

Considering current object detection technology as a deep learning revolution, we
can acknowledge the prescience and creativity of early computer vision in the 1990s.
The majority of early object detection algorithms relied on handcrafted features.
Since efficient image representations were lacking at that time, complex feature
representations needed to be devised, along with diverse acceleration techniques.

Viola Jones Detectors

In 2001, Viola and Jones13,14 introduced the first face detection algorithm capa-
ble of real-time detection without any constraints such as skin color segmentation.
The Viola-Jones (VJ) detector used a sliding window approach that traversed all
possible positions and scales in an image to detect faces. Although the detection
process seemed simple, the computation required was beyond the capabilities of
computers at that time. The VJ detector significantly improved detection speed
by introducing three key techniques: the ”integral image,” ”feature selection,” and
”detection cascade.” By using these techniques, the VJ detector achieved compara-
ble detection accuracy to other algorithms but was tens or even hundreds of times
faster when running on a 700 MHz Pentium III CPU.

Histogram of Oriented Gradient (HOG) Detector

In 2005, Dalal and Triggs15 introduced the Histogram of Oriented Gradients
(HOG) feature descriptor, which can be seen as a significant improvement over the
scale-invariant feature transformations16 and shape context17 methods of the time.
The HOG descriptor strikes a balance between feature invariance (including transla-
tion, scaling, illumination, etc.) and nonlinearity by computing features on a dense
grid of uniformly spaced cells and applying overlapping local contrast normalization

4
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Figure 2-2: Progressive accuracy improvement of object detection on VOC dataset
and COCO dataset.7

on ”blocks”. While HOG can be applied to detect various object classes, it was
mainly developed for pedestrian detection. To detect objects of different sizes, the
HOG detector rescales the input image several times while keeping the size of the
detection window constant. HOG detectors have been a crucial component of many
object detectors18,19 and various computer vision applications for several years.

Deformable Part-Based Model

Deformable Part-Based Model (DPM) stands as a prime example of the classical
object detection approach, having won the VOC-07, -08, and -09 detection chal-
lenges. It was initially introduced by Felzenszwalb et al18 in 2008 as an extension of
the HOG detector. Its detection principle follows a ”divide and conquer” approach,
where training involves learning how to appropriately decompose an object, while
inference involves detecting different object parts. For instance, detecting a ”car”
can be decomposed into detecting its windows, body, and wheels, known as the ”star
model” proposed by Felzenszwalb et al.18 Subsequently, Girshick19,20,21 further ex-
tended this model to a ”hybrid model” capable of handling objects with significant
variations in the real world and made numerous other improvements. Despite to-
day’s object detectors surpassing DPM in terms of detection accuracy, they are still
heavily influenced by its valuable insights, including mixture models, hard negative
mining (HNM), bounding box regression, and context initiation.

Two-Stage Detectors

6
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After a plateau in object detection research due to saturated performance of
handcrafted features in 2010, convolutional neural networks (CNNs)22 brought a
resurgence in 2012. With the ability of deep CNNs to learn advanced and robust
feature representations, the question arose: can we incorporate them into object
detection? Girshick et al23,24 pioneered this integration in 2014 with regions with
CNN features (RCNNs), leading to unprecedented progress in object detection. In
the deep learning era, there are two types of detectors: ”two-stage detectors”, which
view detection as a ”coarse-to-fine” process, and ”one-stage detectors”, which frame
detection as a ”one-step process”.

Region-CNN

The concept behind Region-based Convolutional Neural Network (RCNN) is
straightforward. It involves first extracting a set of region proposals (i.e., candidate
bounding boxes) using selective search25. Each proposal is then resized to a fixed
size and passed through a pre-trained CNN model on ImageNet, such as AlexNet22,
to extract features. Finally, a linear Support Vector Machine (SVM) classifier is
employed to predict the presence of objects and classify them into different classes.
RCNN achieved significant improvement on the VOC07 dataset, with mean average
precision (mAP) increasing from 33.7% (using DPM-v526) to 58.5%. However, it
suffers from a major drawback of redundant feature computation for a large number
of overlapping proposals, which results in slow detection speeds of up to 14 seconds
per image when using a GPU. To address this issue,27 was introduced in the same
year.

Spatial Pyramid Pooling Network

In 2014, He et al.27 introduced the Spatial Pyramid Pooling Network (SPPNet),
which addressed the fixed-size input limitation of previous CNN models by incor-
porating a spatial pyramid pooling (SPP) layer22 . This allowed the network to
generate a fixed-length representation for regions of interest, regardless of their size
or aspect ratio. Unlike R-CNN, which required redundant feature computation for
each region proposal, SPPNet computed feature maps only once for the entire image,
significantly reducing computation time. SPPNet achieved a VOC07 mAP of 59.2%
while being over 20 times faster than R-CNN. However, SPPNet still had some lim-
itations, such as its multi-stage training process and the fact that it only fine-tuned
the fully connected layers. The following year, Fast R-CNN28 was proposed, which
addressed these limitations and achieved even higher detection accuracy.

Fast RCNN

Fast R-CNN was introduced by Ross Girshick28 in 2015. This article is an im-
proved version of R-CNN, with significant improvements in performance and com-
putational efficiency. The main improvements over RCNN are in the following areas:

(1) Fast RCNN still uses selective search to pick 2000 suggestion frames, but
here instead of inputting so many suggestion frames into the convolutional network,
the original image is input into the convolutional network to get the feature map,
and then the feature frames are extracted using the suggestion frames on the feature

7
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map. The advantage of this is that the original suggestion frames overlap a lot and
the convolution is repeatedly calculated, while here the convolution is calculated
only once at each position, which greatly reduces the computation.

(2) Due to the different sizes of the proposed frames, the obtained feature frames
need to be transformed into the same size, which is achieved by the ROI Pooling
layer (ROI means region of interest i.e. target)

(3) There is no SVM classifier and regressor in Fast RCNN, the location and size
of the classification and prediction boxes are output by convolutional neural network

(4) In order to improve the computational speed, the network finally uses SVD
instead of fully connected layers

Faster RCNN

After the accumulation of R-CNN and Fast RCNN, Ross B. Girshick29 proposed
the new Faster RCNN in 2016, which structurally has integrated feature extraction,
proposal extraction, bounding box regression (rect refine), and classification all in-
tegrated in one network, which makes the comprehensive performance improved,
especially in the detection speed30. Faster RCNN can actually be divided into 4
main components:

(1) Convolution layer. As a CNN network target detection method, Faster RCNN
first extracts feature maps of images using a set of basic conv+relu+pooling layers.
the feature maps are shared for subsequent RPN layers and fully connected layers.

(2) Region Proposal Networks. The RPN network is used to generate regional
proposals. this layer determines whether the anchors are positive or negative by
softmax, and then uses the bounding box regression to correct the anchors to obtain
the exact proposals.

(3) Roi Pooling. This layer collects the input feature maps and proposals and
extracts the proposal feature maps after combining these information, which are
sent to the subsequent fully connected layer to determine the target class.

(4) Classification. Using proposal feature maps to calculate the category of
proposals, and again bounding box regression to obtain the exact final position of
the detection box.

Despite the enhanced speed of faster RCNNs over fast RCNNs, computational
redundancy still persists in the subsequent detection phase. In response, several
advancements have been introduced, such as RFCN31 and Light Head RCNN32.

One-Stage Detectors

The majority of two-stage detectors follow a processing paradigm that progresses
from coarse to fine. Coarse detection aims to enhance recall, while fine detection fur-
ther refines localization by building on the results of coarse detection and prioritizing
discriminative power. Although these detectors can achieve high accuracy without
incorporating any elaborate features, their extensive complexity and slow processing
speed make them an infrequent choice in engineering. In contrast, one-step detec-
tors can identify all objects within a single inference step, making them popular for
mobile devices with real-time and straightforward deployment features. However,
their ability to detect small and densely-packed objects is notably compromised.

8
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You Only Look Once

In 2015, Joseph et al33 introduced You Only Look Once (YOLO), which is the
first single-stage detector in the deep learning era33. It adopts a different approach
from the two-stage detector and applies a single neural network to the entire image.
The network segments the image into multiple regions and predicts the bounding
box and probability of each region simultaneously. YOLO achieves remarkable de-
tection speed, with the fast version running at 155 fps and achieving VOC07 mAP
= 52.7%, while the enhanced version runs at 45 fps and achieves VOC07 mAP =
63.4%. However, YOLO has a localization accuracy disadvantage compared to the
two-stage detector, especially for small objects. Later versions of YOLO34,35,36 and
the SSD, which was proposed later, are more concerned with this issue. Recently,
the YOLOv4 team proposed YOLOv737, which surpasses most existing object de-
tectors in terms of speed and accuracy, ranging from 5 to 160 fps. It achieves this
by introducing optimized structures such as dynamic label assignment and model
structure reparameterization.

Single-Shot Multibox Detector

In response to the respective shortcomings and advantages of YOLO and Faster
R-CNN, WeiLiu et al.38 proposed Single Shot MultiBox Detector, referred to as
SSD. The whole network of SSD adopts the idea of one stage to improve the de-
tection speed. The network also incorporates the idea of anchors in Faster R-CNN,
and does feature extraction in layers and computes border regression and classi-
fication operations sequentially, which makes it possible to adapt to the training
and detection tasks of multiple scales of targets. The idea of SSD network subject
design is feature extraction in layers, and edge regression and classification in turn.
Because different levels of feature maps can represent different levels of semantic
information, low-level feature maps can represent low-level semantic information
(containing more details), which can improve the quality of semantic segmentation
and are suitable for learning small-scale targets. High-level feature maps can repre-
sent high-level semantic information, smooth segmentation results, and are suitable
for in-depth learning of large-scale targets. Therefore, the network of SSD proposed
by the authors can be theoretically suitable for target detection at different scales.

CenterNet

Zhou et al39 introduced CenterNet in 2019, which adopts the keypoint-based
detection model, but dispenses with costly post-processing steps such as group-
based keypoint assignment (as seen in CornerNet40 and ExtremeNet41) and non-
maximum suppression (NMS), resulting in an end-to-end detection network. In
CenterNet, objects are represented as a single point, the center of the object, and
all its properties, including size, orientation, position, and pose, are regressed based
on a reference centroid. This approach is both simple and elegant, and enables the
integration of multiple tasks, such as 3D object detection, human pose estimation,
optical flow learning, and depth estimation, into a single framework. Despite its
concise detection concept, CenterNet achieves comparable detection results, with
COCO mAP0.5 at 61.1%.

9
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Detection Transformer

Before Detection Transformer (DTER)42, target detection in the field of deep
learning can be roughly divided into: one-stage detection and two-stage detection.
However, none of these detection methods can directly obtain the detection results
(first, a dense proposal is used to cover the part of the whole image where the
object may appear, and then the category information is predicted, adjusted, and
the position information is obtained; in simple terms, it is similar to a jigsaw puzzle,
in which a small piece of the whole puzzle is detected first, and then each small
piece is put together, and then these small pieces are adjusted until the image
from these small pieces The image is similar enough to the given ground truth,
i.e., it satisfies some artificially set threshold); and the previous detection method
has some problems, such as: repeating a large number of prediction frames, the
design of anchors, how to heuristically assign the target to be targeted to several
anchors, etc.; to solve these problems usually requires some processing, such as NMS,
anchor generation, etc., but these operations can greatly affect the performance of
detection. Compared with the previous target detection, DETR is a more intuitive
approach. DETR finds targets similar to finding targets in a map, first roughly
searching the global scope, and then precisely locking the target with a magnifying
glass; therefore, its detection of small objects is not very effective. Macroscopically
speaking, the previous detection is a way to go from small to large, from local to
global, gradually integrated, and then find the target; while DETR is a way to go
from large to small, from global to local43.

2.1.2 Technology development in object detection

In this section, we introduce several crucial components of detection systems and
their technological advancements. These components encompass multiscale detec-
tion, Context Priming, and Nonmaximum Suppression.

Technical Evolution of Multiscale Detection

Multiscale detection is a critical technical challenge in detecting targets of vary-
ing sizes and aspect ratios. Over the last two decades, multiscale detection has
undergone several historical stages, as depicted in Figure 2-3.

Feature Pyramid and Sliding Window

Following the VJ detector, researchers shifted their focus to a more intuitive
approach to detection, which involved constructing ”feature pyramids and sliding
windows.” These windows were typically of a fixed size, and less consideration was
given to ”different aspect ratios.” In order to detect objects with a more complex
appearance, Girshick et al. explored better alternatives beyond the feature pyramid.
The ”hybrid model”20 was one such solution at that time, where multiple detectors
were trained for objects with different aspect ratios. Additionally, sample-based
detection44,45 offered another alternative by training a separate model for each object
instance.
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Object proposals

Object proposals are a collection of class-agnostic frames that have the potential
to contain any object. Their use in object detection allows us to avoid an exhaustive
sliding window search across an image. For a thorough overview of this topic46,47,
we recommend the reader consult the following publications. Initially, proposal
detection methods adopted a bottom-up detection philosophy48,49. However, since
the advent of deep CNNs in visual recognition, top-down, learning-based approaches
have demonstrated a greater edge in this area since 201450,51. Currently, with the
advent of one-stage detectors, proposal detection is slowly losing prominence.

Anchor-Free Detection

In recent times, the task of multiscale detection has become less complex and
more direct with the increasing availability of GPU computing power. The concept
of solving multiscale issues through deep regression has become simpler, wherein
the bounding box coordinates are predicted based on the deep learning features
directly52. Subsequently, since 2018, researchers have been contemplating object
detection in terms of keypoint detection. These methods are typically based on two
ideas: one is a group-based approach that identifies keypoints such as corner points,
centroids, or representative points and then performs per-object grouping40,41,53,54;
the other is a group-free approach that considers an object as one or multiple points
and then regresses object properties such as size, scale, etc., with reference to these
points39,55.

Multireference/Multiresolution Detection

The approach of multi-reference detection has gained significant popularity and
is widely used in the field29,35. The underlying concept of this approach is to es-
tablish a set of reference points, known as anchor points, which includes both boxes
and points, at every position in the image. The goal is to predict boxes based on
these reference points. On the other hand, multi-resolution detection38,56,57 is also
a commonly employed technique that involves detecting objects at varying scales
across different layers of the network. Both multi-reference and multi-resolution
detection have emerged as crucial components of modern target detection systems.

Technical Development of Context Priming

Visual objects are commonly found within specific contextual environments. The
human brain utilizes these contextual connections to facilitate visual perception
and cognition58. Background priming has been a long-standing technique used to
enhance object detection. The evolution of background priming in object detection
is illustrated in Figure 2-4.

Detection With Local Context

Local context, referring to the visual information in the vicinity of the object of
interest, has been widely recognized as a crucial factor in improving object detection.
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In the early 2000s, Sinha and Torralba59 showed that incorporating local contextual
regions such as facial boundary contours could substantially enhance facial detection
performance. Additionally, Dalal and Triggs14 found that even a small amount of
background information could lead to more accurate pedestrian detection. Recent
advances in deep learning-based detectors have demonstrated the effectiveness of
exploiting local context through methods such as expanding the perceptual domain
of the network or enlarging the object proposals60,61,62,63,64,58.

Detection With Global Context

Global context refers to using information about the overall scene to aid in
object detection. Early detectors used statistical summaries, such as Gist58, to
integrate global context. In recent years, there are two main approaches for inte-
grating global context. The first approach uses operations like deep convolution,
extended convolution, deformable convolution, and pooling to obtain a larger re-
ceptive field65,66. Attention-based mechanisms, such as non-local mechanisms and
transformers, have also been successful in capturing global context information67.
The second approach considers global context as sequential information and uses
recurrent neural networks to learn it. By leveraging global context, object detec-
tors can improve their performance and better understand the relationships between
objects and their surroundings68,69.

Contextual Interaction

Contextual interactions refer to the constraints and dependencies shared among
visual elements. Recent studies have demonstrated that incorporating contextual
interactions can enhance the performance of modern object detectors. Two cate-
gories of approaches have been proposed to leverage contextual interactions. The
first category explores the relationships between individual objects70,71,72,73, while
the second focuses on dependencies between objects and the surrounding scenes74,75.

non-maximal suppression

As nearby windows frequently yield comparable detection scores, non-maximal
suppression (NMS) is utilized as a post-processing measure to eliminate redundant
bounding boxes and obtain the ultimate detection results. However, in the early
days of target detection, NMS was not always incorporated due to the incomplete
understanding of the desired output of a target detection system76. Figure 2-5
visually depicts the evolution of NMS over the past two decades.

Greedy Selection

The traditional approach for performing NMS, although widely used, is consid-
ered outdated. This approach involves selecting the bounding box with the highest
detection score from a set of overlapping detections and removing its neighboring
bounding boxes based on a pre-defined overlap threshold. However, this approach
has limitations, such as potentially selecting an unsuitable box with the highest
score, suppressing nearby objects, and failing to suppress false positives77. As a
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result, there have been various proposed improvements to overcome these limita-
tions78,79,80.

Bounding Box Aggregation

Bounding Box (BB) aggregation is a set of techniques used for object detection
that aims to combine or cluster multiple overlapping bounding boxes into a single
final detection. This approach offers an advantage over traditional non-maximum
suppression (NMS)81 techniques as it takes into consideration the spatial layout of
objects and their relationships82,83. Several successful detectors, such as the VJ
detector and the Overfeat, which was the winner of the ILSVRC-13 localization
task, have incorporated this method into their framework84.

Learning-Based NMS

Learning-based NMS has emerged as a promising approach to improve the perfor-
mance of object detection systems, particularly in scenarios involving occlusion and
dense target detection85,86,87,78. Unlike traditional manual NMS methods, learning-
based NMS treats NMS as a filter to rescore all original detections and trains the
NMS as part of a network in an end-to-end manner or trains a network to mimic
the behavior of the NMS. This approach has garnered significant attention in recent
years and has demonstrated impressive results.

NMS-Free Detector

Researchers have recently developed a series of methods aimed at achieving one-
to-one label assignment, which means assigning only one prediction box to each
object and avoiding the need for NMS altogether42,88. These methods often involve
training with high-quality boxes and following specific rules to achieve NMS-free de-
tection. NMS-free detectors, which are more similar to the human visual perception
system, represent a promising direction for the future of object detection.

2.2 UAV Transmission Line Inspection

2.2.1 The Evolution of UAV Transmission Line Inspection

The advancement of new-generation information technology has led to artificial in-
telligence, cloud computing, and big data emerging as potent drivers of smart grid
technology. In the quest to minimize human involvement in transmission line inspec-
tion, researchers have turned their attention towards devising autonomous inspection
methods with high intelligence, presence, and reliability. In the ensuing sections, we
elucidate the evolution of power inspection and the UAV inspection system89.

Traditional Transmission Line Inspection

To guarantee the secure and dependable operation of transmission lines and their
accompanying equipment, regular inspection of transmission lines is a fundamental
responsibility of the grid system90. This includes high-voltage towers, auxiliary
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components, transmission lines, and transmission channels, among other things. In
traditional manual inspections, personnel must climb the towers for inspection As
shown in Figure 2-6.. This is a labor-intensive and time-consuming process, and
the energized state of the tower and the complex environment can pose significant
safety risks. Additionally, some sections of the transmission line are restricted by
terrain factors, which makes inspection difficult or impossible89.

To overcome these challenges, grid operators have turned to artificial intelligence
technologies in recent years. UAV inspection91,92,93, robotic inspection94,95, and
helicopter inspection96,97 are all widely used to inspect overhead transmission lines
using sensors98 such as cameras and infrared images. Robotic inspection, however,
has limited coverage and hidden operation, and routine maintenance is difficult.
Helicopter inspection is expensive and has strict site requirements. While UAV
inspection’s accuracy is not as high as other technologies, it offers high portability,
mobility, safety, and efficiency. Consequently, it is frequently used in combination
with manual inspection to enhance the accuracy and safety of the power system89.

Figure 2-6: Manual inspection along transmission lines.

UAV Transmission Line Inspection

In recent times, the detection of transmission lines using unmanned aerial vehi-
cles (UAVs) has garnered significant attention from researchers99. As depicted in
Figure 2-7, various autonomous flight control algorithms have been proposed to en-
able precise flight control of UAVs100,101. Additionally, extensive research has been
conducted on UAV guidance systems102 and nonlinear control systems103,104. No-
tably, in 2015, the University of Technology in Madrid developed a new type of UAV
that utilizes a visual navigation system for autonomous flight inspection missions,
with GPS position correction enabled105. Similarly, in 2016, a Japanese R & D team
developed a specialized UAV combat system that accurately locates and identifies
insulator finches, bird nests, and fallen branches106.

Furthermore, several research proposals have been put forward for UAV-based
transmission line inspection, including those by Pouliot et al.107 and Zhang et al.108,
which propose image-based automatic detection methods that can detect various
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aspects of transmission lines. However, detailed inspections of critical components,
such as insulators and accessories, are relatively rare. Tang et al.109 utilized GPS and
image data processing algorithms, along with tracking techniques, to detect infor-
mation regarding the UAV’s location relative to a reference object, thereby allowing
a general condition check of the transmission line. However, detailed inspections of
critical components, such as insulators and accessories, cannot be performed using
this method.

To overcome these limitations, researchers have employed improved radon trans-
form and curvelet transform (CRT) methods for extracting linear features from
satellite images. CRT is especially robust against random noise and system noise
caused by nonlinear features89. In 2017, Manohar110 employed a mobile LiDAR
device to extract power lines. The method successfully extracted partially obscured
power lines with an average accuracy and completeness of 98.84% and 90.84%, re-
spectively.

More recently, Nguyen et al.111 summarized the latest methods and theories for
automatic vision-based power line detection systems and discussed the challenges
and possible solutions. However, with the increasing popularity of drone inspection
technology, new challenges have emerged. There is a need for highly skilled UAV
inspectors, as their technical abilities directly impact the quality of inspections and
the safety of electrical facilities. The lack of professional UAV patrol personnel and
the limited intelligence of UAV inspection systems are the primary limiting factors
for the promotion and application of UAV inspections89.

Figure 2-7: UAV transmission line inspection.

Transmission Line Inspection Based on Image Processing

During the inspection process, a large volume of image data is generated, par-
ticularly for visible light data, which necessitates manual processing and relies on
human inspection to identify and mark defective images. This traditional approach
is not only inefficient, but also poses the risk of increasing the false detection rate. To
address this, numerous researchers have attempted to employ image processing tech-
niques to automatically analyze inspection images and identify potential defects, as
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illustrated in Figure 2-8. Artificial intelligence has emerged as a prominent research
area in recent years, and has demonstrated remarkable achievements in diverse fields
including image detection112, speech recognition113, and data analysis114. In par-
ticular, deep learning techniques have become the dominant approach in the image
processing field115. These methods eliminate the need for manual feature extraction
and are better suited to handling visible images obtained during power patrol, which
often feature complex backgrounds, variable scenes, and diverse target features. To
identify surface breakages in insulators, a multi-scale residual neural network was
proposed116. This approach employs three convolutional kernels of varying sizes for
convolutional filtering and feature image fusion, enhancing the spatial and channel
correlations of the feature maps. Additionally, a seven-layer convolutional neural
network (CNN) was used to accurately detect the partial discharge status of high-
voltage cables with an accuracy rate of 92.57%, surpassing that of support vector
machines and back propagation neural networks117.

Figure 2-8: Transmission line detection based on image processing.

2.2.2 The System of UAV Transmission Line Inspection

The UAV-based electric power inspection system comprises six main components:
the UAV itself, a navigation module, a trajectory tracking module, a Pan/Tilt/Zoom
(PTZ) detection module, a ground station, and a power supply module. The UAV
subsystem is equipped with a PTZ and other equipment, and its range and stability
are critical factors determining the feasibility of the inspection system. Navigation
technology is pivotal to enable autonomous inspection by the UAV, and is comprised
of DGPS and inertial navigation. Given the complexity of power line distribution
environments and the need for precise UAV photo positioning, navigation accuracy
and reliability are essential to achieving autonomous inspection. The tracking tech-
nology plays a vital role in ensuring the UAV reaches designated target points for
effective detection. Deviation of the UAV from the target point may impede de-
tection system’s ability to locate the target. The PTZ detection subsystem is a
critical component for enabling autonomous detection, consisting primarily of PTZ
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and image recognition modules. The ground station subsystem primarily monitors
the UAV status and transmits real-time image information, while also being capable
of sending control commands to the UAV. The power supply subsystem provides the
necessary energy for the UAV to conduct inspections in an orderly fashion. Figure
2-9 in89 illustrates the structural composition of the UAV inspection system.

UAV

The UAV subsystem is a critical component of the UAV electric power inspection
system, comprising of the airframe and the UAV flight control module. The airframe
serves as a platform to carry equipment and payload, while the flight control module
is the core of the UAV system, responsible for controlling the flight status of the UAV.
The flight control module performs a range of crucial functions, such as adjusting the
flight attitude in response to user commands, regulating the attitude and capturing
images with the PTZ equipment. Additionally, the flight control module offers
secondary development capabilities. It can obtain control authority of the UAV
through the communication port linked to the combat control board and control
the status of the UAV and PTZ. The flight control module is capable of real-time
communication with the ground station, transmitting the collected data and image
information while accepting and executing commands.

Navigation Module

To enhance the accuracy and stability of navigation, combined navigation mod-
ule118,119,120 is employed. This technique utilizes multiple positioning systems to
measure the same information source, and extracts and corrects errors of each sys-
tem from the comparative values of these measurements. Kalman filtering is used
to fuse differential GPS data and INS position information, resulting in accurate
position information. The combined differential GPS/INS navigation principle is
illustrated in Figure 2-10.

Trajectory Tracking Module

Correct path tracking is essential for the successful completion of a UAV in-
spection mission. The flight control module plays a crucial role in achieving this
objective. Once the UAV path planning is completed and uploaded to the flight
control module, the navigation module guides the UAV to accurately reach the
planned cruise point on the desired route. Real-time position information of the
UAV is continuously transmitted to the flight control module. The flight control
module compares this information with the planned cruise point, and if there is any
discrepancy, it sends a control command to the UAV to correct its position. This
iterative process continues until the UAV reaches the cruise point and completes its
mission. Researchers have proposed various path planning and tracking algorithms
to improve the performance of UAV inspection systems121,122. These algorithms
use advanced machine learning techniques and optimization methods to generate
optimal paths for the UAV and ensure accurate path tracking.

PTZ Detection Module
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Figure 2-10: Integrated navigation principle of diferential GPS/INS.

In order to more accurately detect any underlying issues in transmission equip-
ment, the PTZ detection module is implemented123,93. This module is comprised
of PTZ and image recognition modules. The PTZ component124,125 receives com-
mands from the flight control module, which includes adjustments to the camera’s
orientation and capturing images. The image recognition module includes a vision
sensor, a dedicated image processor, and a computer. Its main function is to identify
targets in the acquired images. Based on the recognition results, the computer sends
subsequent commands to the PTZ and the UAV through the flight control module.
Figure 2-11 depicts the configuration of the image recognition module.

Figure 2-11: Structure of the image recognition module.

Ground Station

The ground station plays a pivotal role in the inspection process as it facilitates
monitoring and adjustment of the multi-rotor UAV’s flight dynamics. Functioning
as a graphical user interface, it furnishes the user with a platform to manage com-
bat missions and parameters. By using the ground station, the user can manually
oversee the UAV, relay pertinent information, and even directly manipulate flight
parameters126,127. Typically, in practical applications, a radio modem is employed
to connect the UAV to the ground station.

Endurance Module

One of the major limitations hindering the effectiveness of UAV inspections is
insufficient endurance, which also constitutes a crucial challenge that must be tack-
led to achieve fully autonomous UAV inspections. The current power inspection
by UAVs relies predominantly on small multi-rotor aircraft with a typical range of
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20-45m, and even for medium and large aircraft that employ an oil-electric mix, it is
challenging to exceed 3 hours of flight time. The need for frequent battery replace-
ment seriously impedes the efficiency of power inspection. To address this problem,
besides augmenting the battery capacity and minimizing the power consumption of
the UAV, deploying the UAV nest has become a popular solution. Coupled with
the UAV’s autonomous takeoff and landing technology, this approach enhances the
automation of UAV battery management, thereby mitigating the impact of range
limitations on patrol efficiency89.

2.3 Conclusion

This chapter introduces the main techniques in object detection and the components
of the UAV transmission line inspection system. In chapter 3, 4 and 5, the object
detection technology is involved, but the necessary technology is not explained in
detail. Similarly, the UAV transmission line inspection system is designed in chapter
4, 5 and ??, although relevant explanations are also carried out, but not so specific.
Therefore, we introduce the object detection technology and each component of
transmission line inspection system in detail in this chapter. This enables the reader
to have a clear understanding of object detection techniques and UAV inspection
systems, and lays a knowledge foundation for the reader to read the subsequent
chapters.
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3 Application of Low-Altitude UAV Remote

Sensing Image Object Detection Based on Im-

proved YOLOv5

3.1 Introduction

In recent years, in improving the protection of grassland wildlife, it is essential to
determine the number and distribution of grassland animals128. . Traditional man-
ual methods of obtaining statistics are slow and dangerous. Therefore, in the field
of artificial intelligence, especially in the continuous development of computer vi-
sion, achieving intelligent and precise realization of grassland animal detection and
tracking has important research significance and practical value. Figure 3-1 shows
images of grassland animals taken by UAV at low altitudes. It can be seen that
with increased UAV height, the proportions of targets in the picture become smaller
and smaller; therefore, it is necessary to improve the ability of models to detect
small objects when detecting normal objects. If a drone is flying at high altitude,
this presents a huge challenge in detection. At present, there are many algorithmic
models that are able to detect wild animals, such as the algorithm proposed by Ma-
teusz Choinski et al.129 for monitoring the number of wild animals and the algorithm
proposed by Dario G. Lema et al.130 for detecting whether livestock activities exist
in specific terrains, but the performance of these algorithms in real-time needs to be
improved.
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Figure 3-1: (a) The targets are small in the image; (b) The targets are large in the
image.

At present, object detection in images can be roughly divided into two categories:
the first includes one-stage detection methods, such as YOLO and SSD35,34,36,38.
The other includes two-stage detection methods, the most representative of which is
Faster RCNN29. The reasoning speed of the one-stage detection method is relatively
high. The difference is that the two-stage detection method has higher positioning
and target recognition accuracy, while the reasoning speed is relatively low.

In this chapter, a lightweight grassland animal object detection system is de-
signed based on Yolov5. First, Squeeze-and-Excitation Networks are introduced
to improve the expressiveness of the network model. Specifically, the importance of
each channel is automatically obtained by learning, and then features that are useful
are promoted and features that are of little use to the task at hand are suppressed ac-
cording to this level of importance. Secondly, considering the redundancy of feature
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map channels, the convolutional layer of branch 2 in the BottleNeckCSP structure is
deleted, and 3/4 of its input channels are directly merged with the results of branch
1 processing, so that the number of 1 × 1 convolutional layer channels is reduced,
which reduces the number of model parameters with guaranteed accuracy. Next, in
the SPP module of the network model, a 3 × 3 maximum pooling layer is added
to improve the receptive field of the model and thus the detection of small targets.
Finally, the trained model was applied to NVIDIA-TX2 with an FPS of about 26.

3.2 Related Work

In this section, previous works related to the proposed method are reviewed. At
present, object detection technology is used in many fields in combination with
object detection, such as in forest fire detection131, identification of insulator de-
fects on pylons132, and aerial vehicle detection133. At the same time, there have
been many studies on object detection for wildlife detection, such as O-YOLOv2,
YOLOv2134, YOLOv3, Tiny-YOLOv3135, YOLOv4-uw136, Faster R-CNN, Modified
Faster R-CNN, RetinaNet137, CenterNet, improved CenterNet138, and other mod-
els, the performances of which are shown in Table 3-1. Although many models have
high detection accuracy, the large scale of the models and the large number of pa-
rameters leads to their ability to perform real-time detection in application being
insufficient. Jinbang Peng et al.137 used Faster R-CNN and modified Faster R-CNN
models, respectively, to detect wild animals. Although the detection accuracy was
high, the detection speed was very low. The detection speed of the Faster R-CNN
model was 3 fps, and the detection speed of the Modified Faster R-CNN model was
2 fps.

With the advancement of technology, the application of UAVs is everywhere
in daily life, and research based on UAV vision object detection is common. The
current application is more based on the detection of pedestrians and vehicles by
drones139,140,141. The SlimYOLOv3 model proposed by Pengyi Zhang et al.142 not
only has a high detection accuracy but also meets the practical needs of UAVs
in real-time. Yuanyuan Hu et al.143 applied the object detection model to UAV
countermeasures, which is a new research direction based on UAV object detection
and also achieved good results in terms of real-time and accuracy. Small target
detection based on UAV vision is also a research hotspot. The UAV-YOLO model
proposed by Mingjie Liu et al.144 improves the accuracy of small target detection
by adding spatial information. Haijun Zhang et al.145 provide a multi-scale dataset
based on UAV vision, named MOHR, and this dataset is of great significance for
monitoring in the industry.

The purpose of this chapter is to design a lightweight real-time object detector
that can be deployed to an embedded platform and better integrated with UAVs.
At the same time, the detector should accommodate as much as possible the change
in altitude of the UAV during actual flight.

3.3 Materials and Methods

3.3.1 YOLOv5 Network Model

The YOLO model has always been widely used. There have been five updated ver-
sions, from YOLOv1 to YOLOv5. With continuous improvement and innovation, it
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3 APPLICATION OF LOW-ALTITUDE UAV REMOTE SENSING IMAGE
OBJECT DETECTION BASED ON IMPROVED YOLOV5

has been used by deep learning enthusiasts as one of the preferred frameworks for
object detection146,147. The official code of YOLOv5148 provides a total of five ver-
sions of the object detection network: YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x,
and YOLOv5n. YOLOv5n is mainly designed for mobile and CPU environments; it
is fast, but not accurate. Among the other four versions, YOLOv5s is the network
with the narrowest feature map width and the shallowest depth. The following three
models continue to widen and deepen these aspects, respectively. The YOLO net-
work model is mainly composed of the backbone, neck, and prediction layers. The
backbone is a convolutional neural network that aggregates different image granular-
ities and simultaneously forms image features149,150. The neck is a series of network
layers that mix and combine image features. Its main function is to transfer image
features to the prediction layer. The prediction layer predicts the features of the
image, generates the bounding box of the detection target, and predicts the type of
the target object151,152.

Backbone Module

The first layer of the backbone is focus. The main function of this module is
to enrich the training dataset; in particular, random scaling is used to increase the
number of small targets in the training process, improving the robustness of the
network model, and greatly improving its ability to detect small targets.

The default input of YOLOv5s is 640 × 640 × 3, and the focus layer copies it
into four, and then cuts the four pictures into four 320 × 320 × 3 slices using a
slicing operation. Then, the four slices are stitched together depth wise, making the
output 320 × 320 × 12, before being passed through a convolutional layer with a
number of convolution kernels equal to 32 in order to generate a 320 × 320 × 32
output. Finally, the batch normalization and activation function are applied, and
the results are used as input to the next convolutional layer.

BottleNeckCSP is in the third layer of the backbone, and is divided into two main
parts, BottleNeck and CSPNet153. BottleNeck is a classic residual network structure.
The first is a 1 × 1 convolutional layer (conv+batch norm+leaky relu), the next is a
3 × 3 convolutional layer, and finally, the initial input is added through the residual
network structure. The full name of CSPNet is Cross Stage Partial Network, and
it solves the problem of repeated gradients in other large convolutional network
structures154,155,156.

Neck Module

The main function of the neck module is to generate a feature pyramid and
transfer the features of the image to the prediction layer. The feature pyramid
can be used to optimize the network model’s detection of target objects of different
scales, and then to identify the same target objects at different sizes and scales.
Before the PANet157 structure came out, FPN was always the preferred structure
for the feature aggregation layer of the object detection framework. In the research
on YOLOv4, it has been found that the most suitable feature fusion network for
YOLO is PANet. Therefore, both YOLOv4 and YOLOv5 use PANet as the neck to
aggregate features.

PANet is based on the Mask R-CNN and FPN frameworks, and on this basis,

27



3 APPLICATION OF LOW-ALTITUDE UAV REMOTE SENSING IMAGE
OBJECT DETECTION BASED ON IMPROVED YOLOV5

the dissemination of information is optimized158,159. The feature extractor of the
network uses a bottom-up path FPN structure, thereby optimizing the propagation
of low-level features. The feature map of the previous stage is used as the input of
each stage of the third path, and a 3 × 3 convolutional layer is applied to process
it at the same time. The output is added to the feature map of the same stage
of the top-down path through the horizontal connection, and these feature maps
provide information for the next stage. At the same time, adaptive feature pooling
is used to restore the damaged information paths between all feature levels and each
candidate area and aggregate each candidate area on each feature level in order to
prevent arbitrary allocation160,161.

Prediction Module

The prediction module performs the final detection, and an anchor box is applied
to the output feature map, generating an output vector with category probability,
confidence score, and bounding box. On the anchor, YOLOv5 uses cross-grid match-
ing rules to distinguish the positive and negative samples of the anchor. The loss
function uses GIOU loss, and the confidence loss and category loss use the binary
cross-entropy loss function.

Pre-Training

At this stage, it is very difficult to obtain large datasets when users have to take
pictures themselves. At the same time, if the dataset is too small, overfitting will
occur when training the model, which will lead to the model having poor generaliza-
tion ability and robustness. Therefore, users typically do not train network models
from scratch for a given item. The amount of data in this experiment was also lim-
ited, and the training results are likely to exhibit overfitting. To solve this problem,
we adopted the transfer learning method to improve model generalization162. We
used the backbone of the COCO dataset to pre-train the network model and used
the trained backbone to train the wildlife dataset. This method reduced the size
of the training dataset, increased the training speed of the model, and effectively
solved the problem of model overfitting. Since transfer learning allows the model to
learn using different types of data, it is better at capturing the internal connections
of the problem to be solved.

3.3.2 Improved YOLOv5

The improved YOLOv5s network model is shown in Figure 3-2. To improve the per-
formance of the model, SENet network is added after the first three BottleneckCSP
and the BottleneckCSP in the three detection branches. At the same time, in order
to reduce the amount of parameters, the convolution of branch 2 in BottleNeckCSP
structure is deleted, and 3/4 of its input channels are directly merged with the re-
sults of branch 1 processing. Finally, in order to improve the ability of the model
to detect small targets, a 3 × 3 max-pooling layer is added to the SPP module to
improve the receptive field of the model.

Addition of the SENet Network Structure
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Figure 2. The network structure of improved YOLOv5s. 

  

Figure 3-2: The network structure of improved YOLOv5s.

Since the shape and appearance of grassland animals are different from the back-
ground color in the image, in order to improve the detection accuracy for grassland
animal targets163,164,164,165, the SENet network is introduced166, the structure of
which is shown in Figure 3-3.
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First, the Ftr step is a conversion operation. In fact, it is a standard convolution
operation in the structure, and the input and output are defined as: Ftr : X →
U,X ∈ RH′×W ′×C′

, U ∈ RH×W×C . The specific form of this Ftr is shown in Equation
3-1, where Vc represents the c-th convolution kernel, and Xs represents the s-th
input.
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uc = vc ∗X =
c′∑

s=1

vsc ∗Xs (3-1)

The U obtained by Ftr is the second three-dimensional matrix in the structure
diagram, and uc represents the c-th two-dimensional matrix in U . What follows is
the squeeze operation, the specific form of which is shown in Equation 3-2. In fact,
squeeze converts the H ×W × C input into 1 × 1 × C a output.

zc = Fsq (uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc (i, j) (3-2)

Next is the excitation operation, the specific form of which is shown in Equation
3-3. The result obtained by squeeze, above, is z. First, multiply W 1 by z. The
dimension of W 1 is C

r
× C, and r is the scaling parameter. Its function is to

reduce the number of channels, thereby reducing the amount of calculation required.
In addition, because the dimension of z is 1 × 1 × C, the dimension of W1z is
1 × 1 × C/r; then, through the ReLU layer, the dimension remains unchanged.
Then multiply by W2; the dimension of W2 is C × C/r, so the output dimension is
1 × 1 × C, and finally through the sigmoid function, s is obtained.

s = Fex (z,W ) = σ (g (z,W )) = σ (W2δ (W1z)) (3-3)

It can be seen from the above that the dimension of s is 1× 1×C, and s is used
to describe the weight of the feature map C in U . After obtaining s, it is possible
to operate on the original U . The specific form is as shown in Formula 3-4, where
sc represents the weight. Therefore, it is equivalent to multiplying each value in the
uc matrix by sc, which corresponds to Fscale in Figure 3-3.

x̃c = Fscale (uc, sc) = scuc (3-4)

The core idea of SENet is to learn the target feature weight through the loss
function, and by improving the effective feature map weight. Train the network
model by reducing the weight of the feature map that is invalid or has a small
effect, so as to achieve better results. The SENet network structure requires a small
amount of calculation, while at the same time effectively improving the expression
ability of the network model and optimizing it. Therefore, the SENet network is
embedded in the YOLOv5s model to improve the detection accuracy of the model,
as shown in Figure 3-4.
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Figure 3-4: Optimized CSP1 X and CSP2 X module.

After adding the SENet module, the number of parameters of the model increased
by about 3 percentage points, and the running speed was basically the same as that
of the original network. Meanwhile, in order to reduce the number of parameters of
the model, the weight parameter of the model channel was changed from 0.5 to 0.45
under the condition of ensuring the accuracy.
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Improve BottleNeckCSP Module

Because it is necessary not only for the UAV object detection algorithm to accu-
rately identify animals in different environments in the grassland, but also to reduce
the model as much as possible and increase the calculation speed in order to realize
real-time detection using a UAV, the BottleNeckCSP structure in the backbone net-
work of the YOLOv5s framework is optimized. This ensures that, while improving
the detection speed, the accuracy of object detection does not change significantly,
thereby resulting in a lightweight UAV object detection model.

According to the architecture of the YOLOv5s network model, the backbone
network contains three BottleNeckCSP modules, and there are more convolutional
layers in this module. Although the convolutional layer can be used to effectively
extract the features of a picture, there are also more parameters in the convolutional
layer, which means that there are more parameters in the model, which leads to a
decrease in calculation speed. In response to this problem, the BottleNeckCSP
module is optimized in the backbone network. The convolutional layer of branch
two is deleted, and the input of the BottleNeckCSP module is merged directly with
the result of the branch one processing. This will lead to the increase of feature map
channels after concat, so that the parameters of convolution will increase in output,
and the number of parameters will remain unchanged after calculation. Considering
the redundancy of the feature graph, a layer was deleted every four channels in
the input channel of branch 2 to make the input channel 3/4 of the original, so as
to reduce the number of parameters of the model under the condition of ensuring
accuracy. The structure is shown in Figure 3-5(a), (b).
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Figure 3-5: (a) The network structure of improved BottleNeckCSP 1 module; (b)
The network structure of improved BottleNeckCSP 2 module.

Optimize the SPP Module

While the drone is performing aerial photography, if the altitude is too high, it
will cause the target to have small proportions in the image. The size of the input
feature map of the SPP module is 512 × 19 × 19. After the convolution kernel of
256 × 512 × 1 × 1, the number of channels of the feature map changes, and the size
of the output feature map is 256 × 19 × 19. Then, self-sampling this feature map
with three parallel max-pooling layers, and then splicing the output feature map
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into the channel, outputting a feature map with a size of 1024 × 19 × 19. Finally,
a feature graph with an output size of 512 × 19 × 19 is obtained after the 512 ×
1024 × 1 × 1 convolution kernel. To improve the detection accuracy of small and
medium targets, a 3 × 3 maximum pooling layer is added to the SPP module to
improve the receptive field of the model. At the same time, in order to ensure that
the number of input channels of the CSP2 1 module is consistent with the number
of output channels of the SPP module, the weight matrix of the second convolution
kernel in the SPP module is then increased by 1/4 of the number of channels. The
improved SPP module is shown in Figure 3-6.
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Figure 3-6: The network structure of improved SPP module.

Other Tricks

The YOLOv5s model has three detection feature maps, which are obtained from
8, 16 and 32 times of down-sampling respectively. The feature maps are 76 × 76, 38
× 38 and 19 × 19, respectively. The small feature map is used to detect the large
target, and the large feature map is used to detect the small target. This chapter
tried to replace feature maps of different depths for splicing, so that the feature map
paid more attention to the size of the target in the data set. However, due to the
height change of UAV, the proportion of the target in the image changed greatly,
so the experimental results were not ideal. Finally, the original network splicing
method is adopted.

Anchor boxes of different sizes and proportions are set for feature maps of dif-
ferent sizes in YOLOv5s model. These anchor boxes are used to frame the target
object. Through labeling, it can be found that the ratio of label width and height
in the data set of this experiment is roughly distributed at 1:2 and 2:1. Therefore,
it is necessary to modify the size of anchor boxes according to its own data char-
acteristics before training. In this experiment, the size of anchor boxes 33 × 23 in
78 × 78 feature map was changed to 33 × 16, and the size of anchor boxes 116 ×
90 and 373 × 326 in 19 × 19 feature map was changed to 116 × 60 and 350 × 180,
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respectively. The size of other anchor boxes basically conforms to the ratio of label
width to height, so no modification will be made.

3.4 Results

3.4.1 Experimental Setup and Results Analysis

Dataset Introduction

Part of the dataset is generated by image-downloader, an open-source project
that allows users to download images from Google, Bing, and Baidu websites by en-
tering the name of the Image167. The other part of the data set mainly comes from
Vision China, and this website has video data specifically for aerial photography168.
The dataset includes six prairie animals, elephants, zebras, bison, wild horses, gi-
raffes, and hippos, each with about 500 images169. Consideration of different time
periods, different angles, different distances and occlusions, etc., was achieved by
rotating the pictures at different angles, adjusting the contrast, etc. The number of
datasets was thus increased to 4 times the original number. The makesense.ai tool
was used to label the grassland animals in the picture and divide the dataset into
a training set and a test set at a ratio of 9:1. There were 3000 images in the basic
dataset, and the resolution of most of the images was 1200 × 960. After data ampli-
fication, the total dataset contained 12,000 images. Meanwhile, YOLOv5 uses many
effective data processing methods to increase the accuracy of the training model and
reduce the training time. The main methods of data amplification are Mosaic and
Cutout. In addition to these two methods, YOLOv5 also uses image perturbation,
changes in brightness, saturation, and hue, the addition of noise, random scaling,
random cropping, flipping, rotating, random erasure, etc., to expand the amount of
data.

Model Training

In this experiment, Indexes such as Precision, Recall, F1, AP, mAP 0.5 and
mAP 0.5:0.95 were selected to evaluate the performance of the grassland animal
object detection model after training.

Precision reflects the ability of the model or classifier to correctly predict the
accuracy of positive samples. The larger the value, the better the performance.
Recall is the proportion of positive samples predicted to be positive samples to the
total positive samples, and its performance is the same as Precision. Precision and
Recall influence each other. Generally, if the accuracy rate is high, the recall rate
will be low, and if the accuracy rate is low, the recall rate will be high. The F1 value
is the weighted harmonic average of precision and recall. Taking an elephant to be
detected in the picture as an example, TP means that the target in the picture was
correctly recognized as an elephant, FP means that another target was detected was
incorrectly recognized as an elephant, and FN means that the target in the picture
was wrongly identified as belonging to another category.

Precision =
TP

TP + FP
(3-5)
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Recall =
TP

TP + FN
(3-6)

F1 =
2 × (Precision × Recall)

Precision + Recall
(3-7)

AP represents the area under the Precision–Recall curve, while mAP denotes
mean average precision, which is the average value of each category of AP. mAP 0.5
refers to the average value of all APs when the IOU threshold is set to 0.5.
mAP 0.5:0.95 represents the average mAP for different IOU thresholds (0.5, 0.55,
0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95). C represents the number of target types, N
represents the number of IOU thresholds, Krepresents the current IOU threshold,
P (K) and R(K) represent precision and recall.

AP =
N∑
k=1

P (K)∆R(K) (3-8)

mAP =
1

C

N∑
k=1

P (K)∆R(K) (3-9)

∆R(K) = R(K) −R (K − 1) (3-10)

Model Comparison

The PR curves of the YOLOv5s model and the improved YOLOv5s model after
training are shown in Figure 3-7.
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Figure 3-7: (a) YOLOv5s PR curve; (b) improved YOLOv5s PR curve.

The PR curves for each class in different models are presented in Figure 3-7,
and the specific information is summarized as shown in Table 3-2. In the improved
YOLOv5s model, only the average accuracy of giraffe detection was not improved,
and the average accuracy of detection of the other five grassland animals was im-
proved. It can be seen that the overall performance of the improved YOLOv5s
model was better than that of the original model.
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Table 3-2: Average Precision (IOU = 0.5) obtained for each evaluated object detec-
tion algorithm.

Class YOLOv3(AP) YOLOv5s(AP) Improved YOLOv5s(AP)
Elephant 0.923 0.995 0.996

Zebra 0.706 0.970 0.982
Bison 0.942 0.988 0.993
Horse 0.805 0.992 0.994
Giraffe 0.783 0.996 0.996
Hippo 0.812 0.964 0.985
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4.1.5. Loss Function Comparison 

The last layer of the network model was compared with the objective function to 

obtain the loss function, the error update value was calculated, and the first layer was 

reached layer by layer through backpropagation, and the ownership value was updated 

together at the end of the backpropagation. The loss function can more intuitively reflect 

the performance of a classifier or model. The smaller the loss, the better the performance 

of the model or classifier. As shown in Figure 10, the data curves of box_loss, cls_loss and 

obj_loss of the two models are shown in the figure. The blue color corresponds to the 

improved YOLOv5s data curve, and the pink color represents the YOLOv5s data curve. It 

can be seen that with continuous training, the performance of the two models improved 

gradually, and the improved YOLOv5s model converges relatively quickly. 

Figure 3-8: Comparison chart of mAP 0.5 and mAP 0.5:0.95.
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4.1.5. Loss Function Comparison 

The last layer of the network model was compared with the objective function to 

obtain the loss function, the error update value was calculated, and the first layer was 

reached layer by layer through backpropagation, and the ownership value was updated 

together at the end of the backpropagation. The loss function can more intuitively reflect 

the performance of a classifier or model. The smaller the loss, the better the performance 

of the model or classifier. As shown in Figure 10, the data curves of box_loss, cls_loss and 

obj_loss of the two models are shown in the figure. The blue color corresponds to the 

improved YOLOv5s data curve, and the pink color represents the YOLOv5s data curve. It 

can be seen that with continuous training, the performance of the two models improved 

gradually, and the improved YOLOv5s model converges relatively quickly. 

Figure 3-9: Comparison between Precision and Recall.
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During the training process, tensorboard was used to draw the relevant curve.
The data curves of Precision, Recall, mAP 0.5 and mAP 0.5:0.9 are shown in Fig-
ure 3-8, 3-9. The blue color corresponds to the improved YOLOv5s data curve, and
the pink color represents the YOLOv5s data curve. In terms of speed and accuracy,
the improved YOLOv5s model is better.

Loss Function Comparison

The last layer of the network model was compared with the objective function
to obtain the loss function, the error update value was calculated, and the first layer
was reached layer by layer through backpropagation, and the ownership value was
updated together at the end of the backpropagation. The loss function can more
intuitively reflect the performance of a classifier or model. The smaller the loss,
the better the performance of the model or classifier. As shown in Figure 3-10, the
data curves of box loss, cls loss and obj loss of the two models are shown in the
figure. The blue color corresponds to the improved YOLOv5s data curve, and the
pink color represents the YOLOv5s data curve. It can be seen that with continuous
training, the performance of the two models improved gradually, and the improved
YOLOv5s model converges relatively quickly.
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3.4.2 Test Results and Analysis

The results of the detection tests are presented here. The test devices are the
same as for the training machine. However, only in 3.4.2, the test device is an
NVIDIA-TX2 and the OS is Linux. This is to verify the computation speed and
memory usage in an experimental environment similar to that of an actual UAV.

Test Result

The test set was used to verify the improved YOLOv5s model, and its actual
effect is shown in Figure 3-11. It can be seen from the figure that the improved
YOLOv5s model was able to correctly identify the six grassland animals in different
time periods, from different perspectives, and with different target proportions.

Comparison of Results

A comparison of the actual application of the improved YOLOv5s model and
the original YOLOv5s model is shown in Figure 3-12, 3-13, with the value of IOU
set to 0.5. If the value is lower than 0.5, the detection box will not be displayed. In
Figure 3-12(a), (c), the original YOLOv5s model was not able to identify elephants
that were relatively small in the picture; elephants with moderate proportions in
the picture could not be identified completely, only a part of them can be identified.
The improved YOLOv5s model can correctly identify it. In Figure 3-12(b), (d), the
original YOLOv5s model was not able to identify zebras that were relatively small
in the picture. The improved YOLOv5s model was able to correctly identify it. In
Figure 3-13(a), (c), the improved YOLOv5s model was also able to correctly identify
small and medium targets. In Figure 3-13(b), (d), both the original YOLOv5s model
and the improved YOLOv5s model were able to achieve a correct recognition, but
the improved YOLOv5s model had better recognition accuracy than the original
YOLOv5s model.

Performance Comparison with Other Networks

To further verify the performance of the improved model at detecting grassland
animals, the improved YOLOv5s model was compared with other models in the test
set. mAP 0.5, mAP 0.5:0.9 and average detection speed were taken as the evaluation
indicators of the model, and a comparison of the results is shown in Table 3-3. The
test device was NVIDIA-TX2.

It can be seen from Table 3-3 that the mAP 0.5 and mAP 0.5:0.9 values of the
improved YOLOv5s model are the highest, indicating that the performance of the
improved YOLOv5s was the best among the YOLOv3, EfficientDet-D0, YOLOv4,
YOLOv5s and improved YOLOv5s models. As far as the detection speed of the
network model is concerned, the improved YOLOv5s model has an average de-
tection speed of 26 fps in NVIDIA-TX2, which is a bit slower than the initial
YOLOv5s model, but is better than the YOLOv3 model, EfficientDet-D0 model
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Figure 12. (a) Test results for elephant with the original YOLOv5s model; (b) test results for zebra 

with the original YOLOv5s model; (c) test results for elephant with the improved YOLOv5s model; 
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Figure 3-12: (a) Test results for elephant with the original YOLOv5s model; (b)
test results for zebra with the original YOLOv5s model; (c) test results for elephant
with the improved YOLOv5s model; (d) test results for zebra with the improved
YOLOv5s model.
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Figure 13. (a) Test results for horse with the original YOLOv5s model; (b) test results for giraffe with 

the original YOLOv5s model; (c) test results for horse with the improved YOLOv5s model; (d) test 

results for giraffe with the improved YOLOv5s model. 
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Figure 3-13: (a) Test results for horse with the original YOLOv5s model; (b) test
results for giraffe with the original YOLOv5s model; (c) test results for horse with the
improved YOLOv5s model; (d) test results for giraffe with the improved YOLOv5s
model.
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and the YOLOv4 model, which meets the requirements of drones for real-time de-
tection of grassland animals. At the same time, it can be seen from Table 3-3 that
the size of the improved YOLOv5s model is only 12.8 MB, which is smaller than the
other models. Experiments have proved that the improved YOLOv5s model not only
ensures the accuracy of object detection, but also ensures that the network model is
lightweight. In summary, among the four network models proposed in Table 3-3, the
improved YOLOv5s model has the highest mAP 0.5 value and mAP 0.5:0.9 value,
and the scale of the model is also relatively small. At the same time, the detection
speed is also better than that of the YOLOv3 model, EfficientDet-D0 model and
the YOLOv4 model. Although the detection speed is lower than that of the initial
YOLOv5s model, it can meet the needs of real-time detection using UAVs.

Pascal Voc 2012 Dataset Validation

The public dataset selected for this experiment is Pascal voc 2012, with 20 cat-
egory types. Its tag format is xml, but YOLOv5 needs txt format file, so we need
to convert the xml format tag to txt format first. Then the 17,125 images were
divided into training and validation sets, with 13,637 images in the training set and
3488 images in the validation set. The training conditions are consistent with those
described above, and their results on the validation set are shown in Figure 3-14. In
the mAP 0.5 and mAP 0.5:0.95 metrics, the improved YOLOv5 is 0.047 and 0.05
higher than the original model, respectively.
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Figure 3-14: Pascal voc 2012 dataset validation comparison.

3.5 Discussion

For the problem of false positives, test sets were selected to test the performance
of the model with 1612 label targets. Positive samples with an IOU threshold
greater than 0.5 and negative samples with an IOU threshold less than 0.5 were
selected. The number of true positives was 1548, the number of false positives was
48, and the number of false negatives was 64. False positive image types tend to
have similarities between the target to be detected and the background, which may
be mainly due to the following three reasons. Firstly, the content of the image.
When training the model, in order to improve the generalization of the model,
data enhancement is generally used to simulate complex situations such as different
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illumination and different angles in the image. This process may make some images
too bright or too dark. After these images have been extracted by the model, if
they are similar to some background features extracted by the model, the model
will detect the background as an object. Secondly, it is necessary to consider the
scope of the bounding box. In the process of model training, it is necessary to
provide the position of the target in the picture, that is, the enclosing rectangle.
However, the general target to be detected is not a rectangle, and there will be some
background contents inside the label, which could also be responsible for the false
positive. Thirdly, when the drone is flying at high altitudes, the characteristics of
wild animals are proportionally relatively close, which could also be a reason for
false detection.

A test video can be found at reference170. The overall effect is ok, but there
are some shortcomings. Some elephants are sometimes misidentified as giraffes.
We guess that the reason for this is that during the training of the model, part
of the data enhancement darkened the picture to which the giraffe belongs, which
would make its features similar to those of the elephant in the video, thus leading
to misidentification. The problems of the missed detection of small targets and the
difficulty of detecting occluded objects in videos still need further research.

One thing to note is that the lightness of the model facilitates deployment. The
speed of wildlife detection is also extremely important for drones. The recognition
speed in Jinbang Peng’s137 paper was 2–3 fps, and was not able to meet the require-
ments of real-time detection by UAV. The detection speed of the model proposed
in this chapter is 26 fps, 12 times of its detection speed, which meets the require-
ments of real-time detection using UAVs. Although the YOLOV436 model has high
detection accuracy, its model is too large, which is not conducive to the deployment
of embedded devices. The model YOLOv4-uw proposed by Chen L et al.136. has
reached a detection speed of 43 fps, but its accuracy is relatively low, which can
easily cause the phenomenon of missed or false detection. The application of the
Tiny-YOLOv3 model by Adami D et al.135. meets the requirements of lightweight
deployment, but its observation of animals mainly from the ground perspective does
not meet the needs of this chapter applied to UAVs. In conclusion, the target detec-
tion model proposed in this chapter takes into account the accuracy and real-time
requirements. The accuracy of detection is ensured while real-time detection is per-
formed. At the same time, this chapter solves to a certain extent the problem that
the change of target occupancy ratio makes detection difficult.

In this chapter, the selection and design of the model were mainly carried out
considering actual application, where the model can be easily deployed using em-
bedded devices, in order to achieve real-time object detection. The characteristics
of light weight and fast detection make the YOLOV5s model highly competitive
in a variety of embedded device deployments. In conclusion, the model proposed
in this chapter has the following advantages. Firstly, the model can automatically
detect wildlife in the video stream. Secondly, the improved YOLOV5s model is
very small in scale, which makes it easy to deploy to a variety of embedded devices.
This reduces hardware costs for users, which is of great value in practical applica-
tions. Thirdly, the detection speed of the improved YOLOV5s model is very fast,
easily meeting the needs of real-time detection of wild animals. However, most of
the dataset in this chapter is in relatively good light, with a small number of dusk
and night images. Therefore, working at night may not be applicable to the model

43



3 APPLICATION OF LOW-ALTITUDE UAV REMOTE SENSING IMAGE
OBJECT DETECTION BASED ON IMPROVED YOLOV5

proposed in this chapter. At the same time, if the UAV flight is high and the pro-
portions of the target are small, the target will be difficult to detect, which is the
disadvantage of the model proposed in this chapter.

3.6 Conclusion and Future Work

To realize real-time detection of grassland animals using aerial drones, this chapter
proposes a real-time detection method for grassland animals based on the YOLOv5
network model. In the improved YOLOv5s model, in order to improve the accuracy
of object detection, a SENet structure is added. To achieve a lightweight model, the
BottleneckCSP module in the Neck layer was replaced with the BottleneckCSPS X
module. To realize the detection of small and medium grassland animal text, the
SPP module is optimized and a 3×3 maximum pooling layer is added to improve
the receptive field of the model. The experimental results show that compared
with YOLOv3, EfficientDet-D0, YOLOv4, and YOLOv5s, the improved YOLOv5s
network model demonstrated an increase of 0.186, 0.03, 0.007, and 0.011 in the value
of mAP 0.5, an increase of 0.216, 0.066, 0.034 and 0.051 in the value of mAP 0.5:0.95,
and an average detection speed of 26 fps. At the same time, the scale of the improved
model is also small and meets the needs of aerial drones for the real-time detection
of grassland animals.

To address the limitations of the model proposed in this chapter, a searchlight
could be hung on the drone to facilitate the collection of pictures of wild animals at
night. Add the collected pictures to the training set to solve the problem of observing
the habits of wild animals at night. At the same time, in practical applications,
observing the living habits of wild animals requires tracking and observing the target.
The model proposed in this chapter can be fused with the model of object tracking.
The fused model can get the position information of the target more stably, transmit
this information to the UAS, and use coordinate conversion to get the 3D information
of the target. According to this information, the target can be tracked easily by
using UAV control technology. In order to cope with some dead ends in tracking,
the camera angle can be controlled by using a servo, which can greatly improve the
stability of tracking. Because the drone is too high, the target proportion is small,
so that the target is difficult to detect is also a problem to be solved. In addition, it
would also a good research direction to deploy the model proposed in this chapter
in other embedded devices for application in the field of robotics.

44



4 UAV AUTONOMOUS INSPECTION SYSTEM FOR HIGH-VOLTAGE
POWER TRANSMISSION LINE

4 UAV Autonomous Inspection System for High-

Voltage Power Transmission Line

4.1 Introduction

The stable transmission of electricity by high-voltage lines is of great importance to
modern industry and people’s lives171,172,173,174. In daily life, power departments at
all levels should carry out daily maintenance of high-voltage lines to prevent damage
to them by lawless elements or by bad weather, natural losses, etc. The traditional
high-voltage line inspection approach is walking along the line or with the help of
transportation, while using binoculars and infrared thermal imaging cameras, such
as line equipment and channel environment, for proximity inspection and detection,
which are low-efficiency inspection methods175,176,177. Especially in high mountains,
swamps, and other complex terrain, as well as rain, snow, ice, earthquakes, and other
disaster conditions that are difficult for personnel to reach, difficult-to-find equip-
ment damage on a tower, and other shortcomings. With the rapid development
of aviation, remote sensing, and information processing technologies, the power in-
dustry can actively carry out line construction and the operation and maintenance
of new technology research. Among such technology, UAVs have the advantages
of operating with high flexibility and at a low cost for line erection traction and
overhead line inspection178. UAVs are usually controlled by flyers and collect corre-
sponding aerial images. Researchers have used the captured data to develop many
automated analysis functions, such as defect detection179, bird’s nest detection, etc.
However, the existing UAV inspection system still has a single technical means,
cannot synchronize line defects in real time, as well as other problems. These are
mainly reflected in the following points:

(1) The degree of autonomy of the inspection flight: This needs to be improved,
as the inspection efficiency is low. At present, a mainstream inspection flight
robot basically uses a combination of human and machine inspection, the need
for the manual operation of the UAV for inspection target photography, which
involves copying or first manually operating the UAV for photo point loca-
tion collection, and then re-flying inspection. Photo copying requires manual
participation, a low degree of autonomy, and low inspection efficiency;

(2) Flight control stability issues: An inspection flight robot in response to the
complex inspection environment, has difficulty in achieving high precision and
stable hovering, which brings a serious impact on accurate data collection, so
flight control stability has been a difficult point for industry applications;

(3) Drone battery replacement issues: An existing inspection flight robot generally
lacks the functions of fast and accurate recovery and power battery replace-
ment, which means that inspection efficiency cannot significantly improve;

(4) Inspection data fault detection: An inspection flight robot has a low accuracy
for intelligent recognition and slow generation of inspection reports.

In order to solve the above problems, we have proposed innovations in au-
tonomous flight, autonomous path planning, autonomous battery replacement, and
intelligent detection and designed a new UAV inspection system, as shown in Fig-
ure 4-1. The main contributions of this chapter are summarized as follows:
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(1) The ground station system that automatically generates the inspection pro-
gram is designed, including fine inspection, arc-chasing inspection, and channel
inspection, and the UAV can operate autonomously according to this plan to
achieve the all-around inspection of high-voltage lines;

(2) The self-developed flight control and navigation system achieves high robust-
ness and high precision flight control for the UAV, solving the problem of poor
flight control stability for existing inspection robots;

(3) A mechanical device for automatic battery replacement is designed, and a
mobile inspection scheme is provided to complete the transfer of equipment
while the UAV performs its task, greatly improving the efficiency of inspection;

(4) Based on the YOLOX object detection model, some improvements are pro-
posed, and the improved YOLOX is deployed on the cloud server to improve
detection accuracy.
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Figure 4-1: Comparison of the traditional inspection solution and our solution.

4.2 Related Work

The traditional inspection method for high-voltage lines is that inspectors inspect
the lines at high a altitude, which is still used in some areas. However, this is very
dangerous for personal safety because they are likely to fall from height or die by
electrocution, while also working very inefficiently180,181. Another method is that
inspectors use binoculars to check the lines, which guarantees the safety of the op-
erators, but the inspection is also very slow182,183. In recent years, UASs have been
playing an increasingly important role in high-voltage line inspections. Li et al.184

proposed an unmanned intelligent line inspection system applied to the transmis-
sion grid, pointing out the construction elements, operation mechanism, and data
flow diagram of the unmanned system. Calvo et al.185 proposed a path planning
scheme for UAV inspection in a high-voltage line scenario with reasonable plan-
ning for both vehicle and operator tasks, but the reliability of the system was only
verified by simulation. Luque-Vega et al.186 proposed a quadrotor helicopter-based
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UAV inspection system for high-voltage lines to facilitate the qualitative inspection
of high-voltage lines by power inspection departments. The UAV intelligent inspec-
tion system proposed by Li et al.187 provided a new and efficient control and data
processing method, enhanced the coordination and cooperation of UAV inspection
departments, and improved the informationization and automation of UAV inspec-
tion. Guan et al.188 proposed the concept of intelligent power line inspection by
UAV with LIDAR, with a system that is able to inspect power lines with great
efficiency and at a low cost, but ignores the inspection of the other components on
high-voltage lines.

With the development of computer vision technology, object detection is also
gradually being applied to all aspects of life, such as high-altitude vehicle detection
and pedestrian detection. The mainstream object detection methods are divided into
two types; one is the one-stage detection method, such as YOLO and SSD33,35,34,36,38.
The other is the two-stage detection method, such as Faster RCNN29. The two-
stage inspection method is highly accurate but slow, while the one-stage inspection
method is fast but slightly less accurate. However, the one-stage inspection method
has developed rapidly and now achieves almost the same accuracy as the two-stage
inspection method. In recent years, many high-voltage line inspection projects have
been combined with object detection, and many inspection functions, such as line
detection189, bird’s nest detection, and insulator detection, have been developed
based on various datasets. Li et al.190 compared the performance of YOLOv3,
YOLOv5s, and YOLOX s models and proposed an optimized YOLOv5s bird’s nest
detection model, but the model was deployed on UAVs, which have certain real-time
requirements, so the detection accuracy is not very high. Hao et al.191 proposed a
bird’s nest recognition method using a combination of a single-shot detector and
an HSV color space filter to further improve the accuracy of bird’s nest detection.
Nguyen et al.192 proposed a method based on the combination of a single shot
multibox detector and deep residual networks, capable of detecting common faults
in electrical components, such as cracks in poles and cross-arms, damage on poles
caused by woodpeckers, and missing top caps. However, this method is mainly
used for low-voltage ordinary transmission lines and cannot be directly used for
the detection of high-voltage line faults. Yang et al.193 combined deep learning
and migration learning approaches to propose a new aerial image defect recognition
algorithm that can better detect insulators in complex environments.

4.3 Structure of The System and Methods

In this section, firstly, the overall structure of the system is described.
Next, the generation of the scheme in the ground station system is described (path
planning). Then a strong robust flight control algorithm is designed to make the
UAV fly stably even during high-altitude operation. Next, a mobile inspection
scheme is introduced to improve the inspection efficiency. Finally, based on the
basic framework of YOLOX194, some optimization schemes are designed to improve
the model’s detection accuracy.

4.3.1 Structure of the System

The structure of the system in this chapter is shown in Figure 4-2. Firstly, the
operator needs to request the basic data of the high-voltage towers from the ground
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station and generate inspection tasks to send to the UAV. After the drone’s self-
inspection is completed, upon receiving the start command, it begins to perform the
operation task and inspect the electric tower. The drone inspection process uploads
the photos of the inspection target to the cloud server in real time. After receiving
the photos of the inspection, the cloud server uses a combination of manual and
deep learning to detect the photos from the inspection. Manual detection is mainly
for when they are some defects in the line, while intelligent detection is mainly
for the detection of bird’s nests in high-voltage lines, and the inspection report is
generated after the detection is completed. After viewing the report, the staff can
arrange maintenance personnel to carry out maintenance. After the drone completes
its task, it returns to the intelligent machine nest, which will replace the drone’s
battery autonomously to improve the inspection efficiency and prepare for the next
inspection task.

4.3.2 Path Planning

Inspection drones operate autonomously according to the mission plan planned by
the ground station. Using the inspection equipment carried by the UAV, the in-
spection demand points are photographed, and the high-voltage line inspection is
completed efficiently; and its inspection demand is shown in Table 4-1. According to
this demand, this chapter designs three path planning schemes for fine inspection,
arc-chasing inspection, and channel inspection.

Fine Inspection

According to the inspection requirements of No. 1–10 in Table 4-1, a fine in-
spection scheme is designed, as shown in Figure 4-3. Each task point of the path
planning is calculated by the base data of the electric tower in the database. The
base data of the tower include latitude, longitude, height, directional angle, and the
category of the tower. As shown in Figure 4-3, the direction perpendicular to the
azimuth of the tower is the azimuth of the task point location. Taking mission points
2 and 8 as examples, their latitude and longitude can be obtained from Equations
(4-1) and (4-2). X0 and Y0 are the latitude and longitude of the center point of the
current tower. D is the distance of the task point from the center point, determined
by the length of the cross-arms of the tower and the safety distance, and the plus
and minus signs indicate both sides of the tower. θ is the azimuth of the current
tower. TX and TY are the conversion factors between actual distance and latitude
and longitude at the current latitude and longitude. The mission point altitude can
be obtained from Equation (4-3). The above method can obtain the 3D information
for task point locations 2 and 8. Task points 3, 4, 5, 9, 10, and 11 can be based
on the height of task points 2, and 8, minus the height of the cross-arms. Mission
points 6 and 7 are determined by adding a certain safety distance (8 m) to mission
points 2 and 8, to ensure that the UAV safely crosses the high-voltage lines.

X = X0 + ((±D) ∗ cos(θ − 90)

TX

(4-1)

Y = Y0 + ((±D) ∗ sin(θ − 90)

TY

(4-2)
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H = H0 ± h (4-3)
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Figure 4-3: The process of fine inspection.

According to the fine inspection scheme shown in Figure 4-3, the specific inspec-
tion strategy is designed as follows: Starting the inspection task from the ground,
when the inspection drone reaches the starting point position, it starts to descend
in height to task point 1, i.e., after the same height as the ground line, it performs
the task of taking pictures at that point. Then, it proceeds to mission point 2
at the ground wire and takes a picture of the ground wire. After the ground line
photo operation is completed, then the inspection drone’s height is lowered to reach
task point 3 at the upper phase position of the tower, task point 4 at the middle
phase position, and task point 5 at the lower phase position, to complete the photo
task corresponding to each corresponding point. When the tasks of the single-side
tower are finished, the inspection drone is raised to cross-tower task point 6 and
reaches task point 7 on the opposite side of the tower by moving laterally. There
is no photo task at these two points, so the role is to allow the inspection drone
to traverse towers at a safe height. On the other side of the tower, the inspection
drone lowers its altitude to reach task points 8 to 11 and complete the photo task.
When all the tasks of the first tower are performed, the inspection drone is raised to
the termination point, and then it flies to the starting point of the next tower. The
inspection drone continues to perform the above inspection actions according to the
task data until it reaches the end of the mission; at this point, the fine inspection
task is completed.

Arc-Chasing Inspection and Channel Inspection

According to requirement 11 in Table 4-1, the arc-chasing inspection scheme is
designed as shown in Figure 4-4 (a), and the 3D information of the task points can
be obtained as described in Section 4.3.2. By using inspection drones to perform
arc-chasing inspection tasks, operators can check whether the transmission lines are
broken, damaged by by foreign objects, etc. According to requirement 12 in Table 4-
1, the channel inspection scheme design is as shown in Figure 4-4 (b). Through the
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channel inspection task, operators can inspect the high-voltage line channel, which
affects tower and line safety.

1 2

34

5 6

Start point

Current point

End point

Start point

Current point

End point
(a) (b)

Figure 4-4: (a) The process of arc-chasing inspection; (b) The process of channel
inspection.

The specific strategy for the execution of the arc-chasing inspection task is as
follows: The inspection task starts from the starting point, and since there is no
demand for photography at the starting point, the inspection drone descends in
altitude to task point 1. Once the drone arrives at task point 1, the flight control
system adjusts the camera pitch angle to take pictures, while the inspection drone
flies at a certain speed to the upper phase conductor of the second tower, i.e., task
point 2. When mission point 2 is reached, the on-board camera is suspended at
this point because there is no photo task at this mission point. The height of
the inspection drone is lowered to reach the mid-phase conductor, i.e., task point
3. Then, the on-board camera equipment is turned on again and performs the
same action as above, to complete the inspection operation of the middle-phase
transmission lines at task points 3 and 4 and the lower-phase transmission lines
at task points 5 and 6. When reaching task point 6, the last one, the inspection
drone is raised to the termination point, so that the arc-chasing inspection task is
completed.

The specific strategy for the execution of the channel inspection task is as follows:
The inspection task is executed from the starting point, and the starting task point
is located at a fixed height directly above the first pole tower; when the inspection
drone reaches the starting point, the flight control system controls the on-board
camera, which starts working and takes pictures of the channel below at regular
intervals. When the inspection drone reaches the second point, it continues to fly to
the subsequent task points until it reaches the last termination point; then, the on-
board camera stops working, the inspection drone starts to return, and the channel
inspection task is completed.

4.3.3 Sliding Mode Control Algorithm

The whole UAV control system adopts the structure of position control, speed con-
trol, attitude control, and bottom stabilization control, as shown in Figure 4-5.
With this approach, complex control problems can be decomposed, thus facilitat-
ing the design and implementation of the overall controller. The control objects of
the position controller include the velocity controller, the attitude angle controller,
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the attitude angle rate controller, and the robot’s power system. When the UAV
receives the latitude and longitude of the target point, sent by the ground station
as the control input, it can perform position control by combining the real-time
latitude and longitude information during the inspection, thus calculating the tar-
get value for speed control. Velocity control refers to the process of calculating the
attitude angle target value in the UAV body coordinate system by the velocity error
in the N and E directions. Since both the attitude angle controller and the attitude
angle rate controller operate at a high frequency, the main characteristics of this
data source are the low amount of error and stable acquisition in all environments.
Therefore, the performance of the attitude angle controller as well as the attitude
angle rate controller is usually relatively stable, and the performance of the speed
controller directly determines the stability and accuracy of the flight process of the
inspection robot.

Regarding the choice of control algorithm, the sliding mode control has strong
robustness and can tolerate external disturbances well, so we chose the sliding mode
control algorithm to design the speed controller of the UAV.

u̇ = − 1

m
[(sinθcosφ)

i=1∑
n

CTΩ2
i − ρSCru

2] (4-4)

Equation (4-4) is satisfied between the multi-rotor UAV motor speed Ω and the
velocity u̇, where m is the weight of the multi-rotor UAV; θ and φ denotes the pitch
and roll angles of the UAV, respectively; n denotes the specific number of rotors;
CT is the lift coefficient; ρ is the air density; S denotes the windward area of the
UAV in flight; and Cr is the air drag constant.{

ẋ1 = a1x1 + a2u
ẋ2 = −gx1 + a3x

2
2

(4-5)

Ignoring the coupling between the axes during the motion and considering only
the motion in a small angular range, the velocity model can be assumed as Equation
(4-5), where ẋ1 is the dynamic acceleration, ẋ2 represents the real-time velocity, and
a1, a2, and a3 are the model parameters, which can be obtained by debugging. Since
the measurement result of the speed sensor is usually accompanied by a measurement
delay, we add the delayed speed to the system as an extended state, and then
Equation (4-5) can be expressed again as Equation (4-6), where d is the delay factor. ẋ1

ẋ2

ẋ3

 =

 a1 0 0
−g 0 0
0 2

d
−2

d

 x1

x2

x3

 +

 a2
0
0

u

= AX + Bu

(4-6)

Based on this model, the reference model for designing the speed con-
trol is shown in Equation (4-7), where r is the original velocity tar-
get information and the output matrix in the reference model is consis-
tent with the real model, i.e., Cm = C, while the input matrix Bm =
B (−CmA

−1
m B)

−1
, the specific calculation procedure of which is described in Ref.195.

Am can be obtained by debugging.{
Ẋm = AmXm + Bmr
Ym = CmXm

(4-7)
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By designing the reference model, the original velocity information can be
transformed into the target value corresponding to each state, and the error be-
tween the actual state and the target state is noted as Equation (4-8), where
us = −(K1X − K2r − u) and ε is the integral of the velocity error. The design
switching function is σ = Ses, and the derivative is shown in Equation (4-9).

ės =

[
ė
ε̇

]
=

[
Am 0
Cm 0

] [
e
ε

]
+

[
B
0

]
us (4-8)

σ̇ = Sės

= SAmnes − SBm (K1X + K2r − u)
(4-9)

After each state converges and remains in the sliding mode plane, the switching
function and its derivative are zero, and then its equivalent control can be expressed
as Equation (4-10).

ueq = − (SBm)−1 SAmes + K1X + K2r (4-10)

unl = Knf(σ) (4-11)

u = ueq + unl (4-12)

To avoid chattering, we chose to use the smooth function f(σ) = σ/(|σ| + δ)
instead of the symbolic function in the traditional control, as shown in Equation
(4-11). The total output of the final sliding mode controller is shown in Equation
(4-12).

4.3.4 Intelligent Machine Nest

To improve the efficiency and inspection time, this chapter designs a mobile inspec-
tion scheme, as shown in Figure 4-6. When the inspection drone starts to perform
the task, the operator drives the vehicle to the ready landing position in advance and
waits to replace the battery after the inspection drone work is completed. Transfer-
ring sites and putting away the equipment are completed during the inspection time
period. The intelligent machine nest is able to charge the drone’s battery, which
guarantees that the drone can carry out long inspection missions.

The whole structure of the intelligent machine nest is shown in the lower right
corner of Figure 4-6. The upper surface is the apron, its structure with beveled
edges on the left and right can make up for the accuracy error of the inspection
drone landing on the apron, and four sensor brackets are installed on the apron
to detect whether there is an inspection drone on the apron. Four cylinders are
installed on the lower surface of the apron, which is the power equipment for the
homing and locking device of the inspection drone. Six battery compartments are
installed underneath the cylinders, which are fixed on two crossbeams. The space
underneath the battery compartments is reserved for the optional installation of
charging stewards, chargers, and air compressors. The robotic arm designed in this
chapter has three degrees of freedom, which are the Z -axis robotic arm providing
up and down degrees of freedom, the X -axis robotic arm providing left and right
degrees of freedom, and the Y -axis robotic arm providing front and rear degrees
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of freedom; the battery gripper is installed on the Y -axis robotic arm. Universal
wheels are installed on the four corners of the bottom of the intelligent machine nest
to form a mobile and fixed device of the intelligent machine nest.

4.3.5 YOLOX

YOLOX uses YOLOv3 as the baseline, with Darknet53 backbone architecture and
spatial pyramid pooling (SPP) layer. The main contribution of YOLOX is the
introduction of the “Decoupled Head”, “Data Augmentation”, “Anchor Free”, and
“SimOTA Sample Matching” methods. An anchor-free end-to-end object detection
framework is built and achieves top-level detection.

Decoupled Head is a standard configuration in object detection one-stage net-
works, such as RetinaNet196, FCOS55, etc. The final bounding box in YOLOv3 is
implemented together with the confidence in a 1 × 1 convolution, while in YOLOX
the confidence and regression boxes are implemented separately by decoupling the
header and being combined into one at the prediction time. Decoupling the detec-
tion head increases the complexity of the operation; in order to achieve a balance
between speed and performance, the experiments first used one 1 × 1 convolution to
reduce the dimensionality and then used two 3 × 3 convolutions in each of the clas-
sification and regression branches, which ultimately allowed the model to increase
the parameters only a little and brought a 1.1 percentage point improvement in AP
on the COCO dataset. YOLOX uses the Mosaic and MixUp data enhancements,
which add 2.4 percentage points to YOLOv3. It should be noted that these two
data enhancements were turned off for the last 15 epochs of training; before that,
Mosaic and Mixup data enhancements were turned on. It was found that ImageNet
pre-training would be meaningless due to a stronger data enhancement approach,
so all models were trained from scratch. YOLOX uses the Anchor Free method to
reduce the model parameters. From the original three groups of anchors predicted
by one feature map to one group, the coordinate value of the upper left corner of
the grid and the height and width of the predicted box are predicted directly. The
main role of SimOTA is to assign a ground truth box to each positive sample in the
output prediction box of the network and let the positive sample fit that ground
truth box. This replaces the previous anchor scheme to fit the anchor, thus achiev-
ing anchor free. SimOTA enables YOLOX to improve 2.3 percentage points on the
COCO dataset.

4.3.6 Improved YOLOX m

In order to improve the accuracy of the model, the following improvements are
made in this chapter based on the YOLOX m network structure. Firstly, coordinate
attention (CA)197 is introduced after the output feature map of backbone, which
embeds the location information of the feature map into the channel attention.
Then, the binary cross entropy (BCE) Loss in the confidence loss is changed to the
varifocal loss (VFL)198, to solve the problem of the low confidence of the box where
the location prediction is very accurate, i.e., the problem of unbalanced positive and
negative samples. Finally, the SCYLLA-IoU (SIoU)199 loss function is introduced
to improve the capability of the bounding box regression. We also tried to add
adaptively spatial feature fusion (ASFF)200 after the output feature map of the
neck, but the accuracy improvement on the validation set was very small and added
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a larger computational effort, so the trick was not increased. The structure of the
improved YOLOX is shown in Figure 4-7.

Coordinate Attention

In the field of object detection, attention mechanism is a very common trick. The
more commonly applied attention mechanisms are squeeze-and-excitation networks
(SENet)166, the convolutional block attention module (CBAM)201, efficient channel
attention (ECA)202, and coordinate attention (CA)197. The main idea of SENet
is to refine the values on the long-width dimension into a single value and then
multiply it by the original value on top of the long-width, thus enhancing the useful
information and suppressing the less-useful information. CBAM can be considered
as an enhanced version of SENet, where the main idea is to perform attentional
operations on features in space and on channels. ECA builds on the SENeT module
by changing the use of the fully connected layers in SENet to learn the channel
attention information for the 1 × 1 convolutional learning of channel attention
information. This avoids channel dimensionality reduction when learning channel
attention information, while reducing the number of parameters.

Coordinate attention is mainly divided into coordinate information and coordi-
nate attention generation. The specific structure is shown in Figure 4-8. For the
input feature map x, the channels are first encoded along the horizontal and vertical
coordinate directions using pooling kernels of dimensions (H, 1) and (1,W ), respec-
tively. Therefore, the outputs in two different directions are shown in Equations
(4-13) and (4-14), respectively. The above two transformations not only return a
pair of direction-aware attention graphs but also allow the attention module to cap-
ture the dependencies in one direction, while preserving the position information in
the other direction, which allows the network to localize the target more accurately.

zhc (h) =
1

W

∑
0≤i≤W

xc(h, j) (4-13)

zwc (w) =
1

H

∑
0≤i≤H

xc(j, w) (4-14)

To make full use of the above information, the two feature maps generated by the
previous module are first cascaded and then a shared 1 × 1 convolutional transform
F1 is used, as shown in Equation (4-15). The generated f ∈ RC

r
×(H+W ) is an

intermediate feature map of the spatial information in two directions, and denotes
the downsampling scale.

f = δ
(
F1

(
zh, zw

))
(4-15)

Then, f is divided into two separate tensors, fh ∈ RC
r
×H and fw ∈ RC

r
×W , along

the spatial dimension. Next, the number of channels of fh and fw are transformed
to match the number of channels of input X using two 1×1 convolutions Fh and
Fw, as shown in Equations (4-16) and (4-17).

gh = σ
(
Fh

(
fh

))
(4-16)
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Figure 4-8: The structure of the coordinate attention.

gw = σ (Fw (fw)) (4-17)

Finally, gh and gw are expanded as weights, and the output of the final CA
module is shown in Equation (4-18). It is important to consider that when the model
introduces the attention mechanism, the number of input and output channels on
the feature map should be consistent with the original network.

yc(i, j) = xc(i, j) × ghc (i) × gwc (j) (4-18)

Varifocal Loss

The confidence loss in YOLOX is the binary crossentropy (BCE) loss, and the
BCE is defined as in Equation (4-19), where yi is the binary label value 0 or 1, and
p(yi) is the probability of belonging to the yi label value. When the label value yi = 1,
BCELoss = −logp(yi), the label value yi = 0, and BCELoss = −logp(1 − yi). It
can be seen that the loss is small when the predicted value is close to the labeled
value and large when the predicted value is far from the labeled value.

BCELoss = − 1

n

n∑
i=1

[yi · log p (yi) + (1 − yi) · log (1 − p (yi))] (4-19)

However, BCE does not solve the problem of unbalanced sample classification
very well, so focal loss was proposed based on BCE. Focal loss adds a moderator
to reduce the weight of easy-to-classify samples based on the balanced BCE loss
function, which focuses on the training of difficult samples. It is defined as Equation
(4-20), where α is the weight used to balance positive and negative samples, (1−p)γ

is the adjustment factor, and γ is the adjustable focusing parameter. The larger
the value of γ is, the smaller the loss of the positive samples is, and the model’s
attention is directed to the hard-to-classify samples; and a large γ expands the range
of samples for which a small loss is obtained. This loss function reduces the weight
of the easy-to-classify samples and focuses on the hard-to-classify samples.

FL(p, y) =

{
−α(1 − p)γ log(p) if y = 1
−(1 − α)pγ log(1 − p) otherwise

(4-20)

Based on this idea of weighting in focal loss, Zhang et al. used V FL to train the
regression continuous IoU-aware classification score (IACS). Focal loss is treated the
same for positive and negative samples, while V FL is not equivalent, and V FL is
defined as shown in Equation (4-21).
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V FL(p, q) =

{
−q(q log(p) + (1 − q) log(1 − p)) q > 0
−αpγ log(1 − p) q = 0

(4-21)

Here, p is the predicted IACS and q is the target IoU score. q is the IoU between
the prediction box and the ground truth box for positive samples, and q is 0 for
negative samples. V FL attenuates only the negative samples with pγ, while the
positive samples are weighted using q. If the positive samples have a high IoU, the
loss should be larger, so that the training can focus on the samples with high quality.
To balance the overall positive and negative samples, V FL also used α for weighting
the negative samples.

SCYLLA-IoU

Intersection over union (IoU) loss is the most common loss function in object
detection. The IoU loss defines the intersection ratio of the ground truth box and the
prediction box, and the loss is 1 when there is no intersection between the prediction
box and the ground truth box. However, when the prediction box is closer to the
ground truth box, the loss is smaller, and when the prediction box and the ground
truth box intersection and ratio are the same, the IoU loss cannot determine which
prediction box is more accurate. Generalized intersection over union (GIoU)150 loss
proposes an external rectangular box and an intersecting rectangular box to better
reflect the overlap between the two, which solves these two problems to some extent.
However, when the prediction box is parallel to the ground truth box, GIoU loss
degenerates to IoU loss. Distance-IoU (DIoU)203 loss introduces a penalty term to
directly minimize the normalized distance between the prediction frame and the
center point of the ground truth box, which not only solves the nonoverlapping
problem but also converges faster. Complete-IoU (CIoU)203 loss adds a width-to-
height ratio constraint over DIoU loss, which allows CIoU to have faster convergence
and a further improvement in accuracy.

None of the above loss functions consider the angle, but the angle can indeed
affect the regression, so the SCYLLA-IoU (SIoU) loss function was proposed by
Gevorgyan et al. The SIoU loss function consists of four cost functions: angle,
distance, shape, and IoU. The angle cost is shown in Figure 4-9 (a), where B is the
prediction box and BGT is the ground truth box. When the angle α ≤ π/4 from B
to BGT converges to α, the opposite converges to β. The maximum value is obtained
at α = π/4. The specific definition is shown in Equation (4-22).

Λ = sin(2α) (4-22)

Distance cost is defined in Equations (4-23) and (4-24). Taking the horizontal
direction as an example, that is, when the two boxes are nearly parallel, α tends to
0, so that the calculated angular distance between the two boxes is close to 0; at
this time γ is also close to 2, and then the distance between the two boxes for the
overall loss of the contribution becomes less. In addition, when α tends to 45°, the
angle cost between the two boxes is calculated to be 1; at this time γ is close to
1, and the distance between the two boxes should be taken seriously and needs to
account for a larger loss.
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Figure 4-9: (a) Graphical explanation of SIoU loss function; (b) The definition of
IoU.

∆ =
∑
t=x,y

(
1 − e−γpt

)
(4-23)

px =

(
Cw1

Cw2

)2

, py =

(
Ch1

Ch2

)2

, γ = 2 − Λ (4-24)

Shape cost is defined in Equations (4-25) and (4-26). Shape cost shows whether
the prediction box is consistent with the ground truth box in terms of length and
width, using θ = 4 in the experiment. In summary, the specific definition of the
SIoU loss function is given in Equation (4-27).

Ω =
∑
t=w,h

(
1 − e−wt

)θ
(4-25)

ωw =

(
|W −WGT |

max (W,WGI)

)
, ωh =

(
|H −HGT |

max (H,HGI)

)
(4-26)

SIoU = 1 − IoU +
∆ + Ω

2
(4-27)

4.4 Experiments

In this section, the dataset for the experiments, the evaluation metrics of the model,
and the training conditions are presented first. Then the ablation experiments are
performed on the YOLOX network model. Finally, a practicality validation test of
the system is performed.

4.4.1 Dataset Establishment

The datasets in this chapter were partly obtained by autonomous UAV flights and
partly collected from the Internet. Since there are fewer datasets for problems
related to defects such as displacement of the grading ring and defective locking
pins, the current dataset involved in this experiment is mainly about bird’s nests on
electric towers. A total of 2822 images of bird’s nest data were collected, divided
into a training set of 2430 images, a validation set of 282 images, and a test set of
110 images. In our experiments, we found that Mosaic data augmentation is not
applicable to the dataset in this chapter, so we turned off Mosaic data augmentation
during the model training. We also found that by adding the L1 loss function at
the beginning of the training, the model performs a little better on the test set.
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4.4.2 Evaluation Metrics

The evaluation metrics of the object detection model in this experiment are
Precision, Recall, mAP0.5 and mAP0.5:0.95. Precision is able to detect the per-
formance of the network model in predicting positive samples, i.e., how many of
the positive samples predicted by the network model are correct positive samples;
the higher the Precision value is, the higher the accuracy of the model detection
is. Recall is the proportion of true positive samples predicted as positive by the
network model to the total positive samples. In general, the values of Precision
and Recall are mutually constrained: the higher the Precision is, the lower the
Recall is, and vice versa.

Precision =
TP

TP + FP
(4-28)

Recall =
TP

TP + FN
(4-29)

The area under the Precision-Recall curve is called AP , and the average value
of each category is mean Average Precision (mAP ). APS is AP for small objects:
area < 32 × 32, APM is AP for medium objects: 32 × 32 < area < 96 × 96, APL

is AP for large objects: area > 96 × 96. mAP0.5 is the average value of AP for
each category when the value of intersection over union (IOU) is 0.5. mAP0.5:0.95 is
the average value of mAP for different IOU thresholds (IOU = 0.5, 0.55, 0.6, 0.65,
0.7, 0.75, 0.8, 0.85, 0.9, and 0.95). N is the total number of each category, K is
the range of values of IOU, and K denotes the current threshold of IOU. P (K) and
R(K) represent the Precision and Recall of the network model when the threshold
of IOU is K, respectively.

AP =
N∑
k=1

P (K)∆R(K) (4-30)

mAP =
1

C

N∑
k=1

P (K)∆R(K) (4-31)

∆R(K) = R(K) −R(K − 1) (4-32)

4.4.3 Model Training

The experimental platform for model training in this chapter is as follows: OS is
Windows 11, GPU is GeForce RTX3090, CPU is Intel(R) Core(TM) i9-12900K,
application development language is Python3.8, deep learning framework is Py-
torchv1.11.0, and CUDA11.3. The initial parameters of the model training are as
follows: the input size of the image is 768 × 1280, the initial learning rate is 0.01,
the epoch value of warmup is 5, the value of weight decay is 0.0005, the L1 loss
function is increased from the beginning of training, and the epoch of training is
200.
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4.4.4 Ablation Experiments

YOLOX has six different versions of the network model YOLOX s, YOLOX m,
YOLOX l, YOLOX x, YOLOX tiny and YOLOX nano. Among them, YOLOX tiny
and YOLOX nano are lightweight models that require little computing power from
the hardware platform and are very friendly for deployment on embedded plat-
forms204. The network model in this chapter is deployed on a cloud server and
is not particularly focused on speed. Therefore, we compared the performance of
four other models on the dataset, and the results are shown in Table 4-2. As seen
in Table 4-2, although the YOLOX x model had a deep network and a relatively
large number of computations and parameters, the accuracy was not the highest.
YOLOX m and YOLOX l achieve almost the same accuracy, but the number of
parameters and computation of YOLOX m was only half of that of YOLOX l, so
we finally chose YOLOX m as the baseline of the object detection model.

Attentional Mechanisms

In our experiments, we added different attention mechanisms after the feature
maps outputted by backbone, and the specific results are shown in Table 4-3, which
shows that the best results are obtained after adding CA. The improvement over
the initial network is 0.62 percentage points in the mAP0.5:0.95 metric and 0.36 and
0.22 percentage points over CBAM and ECA, respectively, with almost no increase
in the number of parameters and computational effort. We also tried to add the
attention mechanism to the feature pyramid, but the accuracy not only did not
improve, but actually decreased. So, finally, only the CA module was added after
the output feature map of backbone.

Confidence Loss

The confidence loss function in YOLOX is the BCE loss function, and we replaced
it with the FL loss function and VFL loss function to verify the performance of the
model, respectively, and the results are shown in Table 4-4. The FL loss function
not only did not improve the accuracy of the network model but also made the
model decrease by 0.39 percentage points. The VFL loss function improved by 0.87
percentage points on the mAP0.5:0.95 metric. Since the loss function is only used
during model training and does not change the structure of the model, it does not
increase the computational effort or the number of parameters of the model.

Bounding Box Regression

IoU and GIoU loss functions are provided in YOLOX for bounding box regres-
sion, and we tried to verify the performance of DIoU, CIoU, and SIoU loss functions
on our dataset; the specific results are shown in Table 4-5. As can be seen from
Table 4-5, the performance of the SIoU loss function is optimal, with a 0.73 percent-
age point improvement over the IoU loss function. However, different loss functions
may perform differently on different datasets, so it depends on the variation of mAP
values on the validation set.
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Table 4-4: Performance comparison of different confidence loss functions.
Methods mAP0.5(%) mAP0.5:0.95(%) APS APM APL

YOLOX m + BCE 97.8 70.63 / 75.6 70.5
YOLOX m + FL 97.7 70.22 2.8 72.4 70.4
YOLOX m + VFL 98.3 71.50 20.5 76.6 71.2

Table 4-5: Performance comparison of different regression loss functions.
Methods mAP0.5(%) mAP0.5:0.95(%) APS APM APL

YOLOX m + IoU 97.8 70.63 / 75.6 70.5
YOLOX m + GIoU 97.8 70.92 / 76.7 70.7
YOLOX m + DIoU 97.8 71.12 / 76.7 70.8
YOLOX m + CIoU 97.8 71.18 / 76.7 70.8
YOLOX m + SIoU 97.9 71.36 / 76.7 71.1

The performance of the improved YOLOX m network model is shown in Table 4-
6, where row 1 is the baseline and rows 2–4 are our improved model. On the
mAP0.5:0.95 metric, the final model improves 2.22 percentage points over the original
network model YOLOX m, with almost no increase in the number of parameters
and computation.

4.4.5 System Validation

In order to verify the effectiveness of the autonomous inspection system for high-
voltage transmission line drones, actual flight tests are very necessary. The ac-
tual flight test was conducted with the team’s self-developed UAV as the hardware
platform. The experimental site was a high-voltage line in Xuzhou City, Jiangsu
Province, China, and the actual flight test was conducted after approval by safety
management, as shown in Figure 4-10. We not only verified the single UAV au-
tonomous inspection operation but also carried out a test of a multiple UAVs simul-
taneous autonomous inspection operation.

Flight Data

The inspection drone took off from an open area around the high-voltage tower
and completed its operational tasks according to the inspection plan described in
Section ??. To facilitate the viewing of the data, the latitude, longitude, and altitude
of the inspection drone flight were transformed into the true distance in the (N, E, D)
coordinate system, as shown in Figure 4-11. Taking Figure 4-11 (b) as an example,
the inspection drone took off from (0,0,0) and conducted a single-side arc-chasing

Table 4-6: Performance of the improved YOLOX m model.
YOLO m CA VFL SIoU Par Gflops mAP0.5:0.95 (%)

✓ 25.28 M 176.94 70.63
✓ ✓ 25.36 M 177.03 71.25 (+0.62)
✓ ✓ ✓ 25.36 M 177.03 72.12 (+0.87)
✓ ✓ ✓ ✓ 25.36 M 177.03 72.85 (+0.73)
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inspection of two high-voltage towers in the distance, returning to (0,0,0) after the
inspection task was completed. Its real flight trajectory was consistent with the
trajectory depicted in Figure 4-4 (a) in Section 4.3.2, and the flight trajectories in
Figure 4-11 (a), (c) correspond to the planned trajectories in Figures 4-3 and 4-4
(b), respectively. This shows that inspection drones are able to operate precisely
according to the tasks planned in the ground station.

As can be seen from Section 4.3.3, the speed control of the inspection UAV is the
core of the control system, and the tracking results of the speed control can reflect
the stability of the UAV flight well. The results of the speed tracking for the three
inspection tasks are shown in Figure 4-12. VelN, VelE, and VelD are the values of
the speed in the N direction, E direction, and vertical direction, respectively. Red
dashed lines are the speed target values and blue solid lines are the actual speed
values. The flight data shows that the inspection drone has good speed tracking
performance and stable flight during the actual operation.

Inspection Data Collection

The schematic diagram of fine inspection data collection is shown in Figure 4-13,
which shows the data pictures of arc-chasing wire, full tower, overhanging wire clip,
grading ring, and insulator. These data will be uploaded to the cloud server, making
it more convenient for operators to view.

A schematic diagram of the dataset collection for arc-chasing inspection and
channel inspection is shown in Figure 4-14, which illustrates the specific details and
surroundings of a high-voltage transmission line. The operator can check whether
the high-voltage transmission line is broken and/or damaged by foreign objects ac-
cording to the arc-chasing inspection data, and at the same time can observe whether
there are ultra-high trees and illegal buildings in the high-voltage transmission line
channel.

Results of the Bird’s Nest Detection

We compared the detection results of YOLOv3, YOLOX m, and the improved
YOLOX m model for bird’s nests, from which we selected representative detection
results, as shown in Figure 4-15, where the red rectangular box is the result of model
detection, the interior of the yellow elliptical box is the result of model incorrect
detection, and the yellow rectangular box is a zoomed-in view at the location of the
yellow ellipse; the interior of the blue elliptical box is the result of model’s correct
detection, and the blue rectangular box is a zoomed-in view at the location of the
blue ellipse. The detection sample in the first image was relatively difficult, as the
YOLOv3 model did not detect the bird’s nest in the image, while the YOLOX m
model detected the real bird’s nest, but there was a false detection. In the second
image, both the YOLOv3 model and the YOLOX m model had false detections,
while the YOLOX m model had a relatively small range of false detections. In
the third image, there were three false detections in the YOLOv3 model and one
false detection in the YOLOX m model. In the fourth image, both the YOLOv3
model and the YOLOX m model had a false detection, but the location of the false
detection were different. The improved YOLOX m model made a correct detection
for all four images. Although the confidence level of some categories is lower than
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the original YOLOX m model, no wrong detections were made for any images. In
conclusion, the generalization of the improved YOLOX m model was the best.

Comparison of Inspection Efficiency

After a large number of actual flight experiments, we summarized the rele-
vant technical indicators of this UAV inspection system and compared it with the
combined human-machine inspection scheme and the traditional manual inspection
scheme, as shown in Table 4-7. Compared with the human-machine combined in-
spection scheme, this system inspection scheme’s fine inspection net time is only
5 min, saving about 10 min compared to the human-machine combined inspection
scheme and saving about 40 min compared to the traditional manual inspection.
The average number of pole towers inspected in a single day is 40, and the maxi-
mum number of towers inspected in a single sortie is 6, with the advantages of a
duration of 42 min for a single sortie inspection and less than 3 min of intelligent
machine nests for a battery replacement, plus only one staff member is needed for
system monitoring. In summary, the data show that the UAS described in this
chapter leads to a significant increase in inspection efficiency.

4.5 Discussion

The design of the system in this chapter is mainly considered with the the engi-
neering application of high-voltage transmission line inspection. Compared with
the existing inspection system, the advantages of the system in this chapter are as
follows: (1) It designed and developed a ground station system integrating inspec-
tion path planning, task management allocation, data management, intelligent fault
diagnosis, and other multi-functional functions, realizing the fully autonomous op-
eration of the inspection process, improving the autonomy of inspection, and saving
the cost investment of professional inspection operation training required by the ex-
isting inspection. (2) It independently developed a flight control system and naviga-
tion system to achieve high robustness and high precision flight control of the flying
robot, solving the problem of poor stability of the existing inspection robot flight
control. (3) It proposed a mobile inspection scheme, completing the autonomous
battery replacement of the inspection robot on the intelligent machine nest and
significantly improved the inspection efficiency. (4) It used a fusion YOLOX ob-
ject detection algorithm, combined with manual detection, accomplishing the rapid
generation of detailed inspection reports.

In Table 4-1, we list the many inspection requirements. At present, only the
detection of the bird’s nest is better, and the detection of other defects in the
line cannot be detected by applying the deployed algorithm yet. This still requires
manual inspection, mainly because of the limited dataset currently collected and the
more complex detection of various defects, which is the drawback of this chapter. As
shown in Figure 4-16, the grading ring is displaced, the insulator string is tilted, the
locking pin is defective, etc. More data need to be collected and a reasonable data
enhancement and neural network model needs to be applied to detect the defects.

Regarding the backbone of YOLOX, we also tried some newer backbones such
as HorNet205, EfficientFormer206, RepVgg207, MViT208, etc. They have a good
performance in the field of image classification, but placing them into YOLOX was
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(a) (b) (c)

Figure 4-16: (a) The grading ring is displaced; (b) The locking pin is defective; (c)
The insulator string is tilted.

not very satisfactory, as there was almost no improvement for the accuracy of the
model, so we kept the backbone of the original model. For the neck part of YOLOX,
we also tried to add ASFF after the neck output feature map to filter the interference
information and improve the amount of useful information. However, there was little
improvement in the accuracy of our dataset, and a large amount of computation was
added. Therefore, in the end, ASFF was not added.

4.6 Conclusion and future work

In this chapter, we designed an autonomous inspection system for high-voltage power
transmission line drones, which realizes the efficient inspection of high-voltage power
transmission lines. Based on the inspection demand of high-voltage power trans-
mission lines, three path planning schemes were designed, including fine inspection,
arc-chasing inspection, and channel inspection, to achieve the all-around inspection
of high-voltage power transmission lines. In order to make the UAV perform stable
operational tasks even at high altitude, a reference model-based sliding mode con-
trol algorithm was designed to improve flight stability. A mobile inspection solution
was designed to complete the transfer of equipment during the inspection and to
complete the task of automatic battery replacement at the same time, which greatly
saves time and improves work efficiency. Finally, a YOLOX-based high-precision
object detection algorithm was designed. Firstly, CA was added to the backbone
output of the three feature maps to improve the ability of the model to extract fea-
tures. Then the VFL, SIoU loss function was used to further improve the accuracy
of the model. The improved YOLOX increased the mAP0.5:0.95 metric by 2.22 per-
centage points for bird’s nest detection. In conclusion, after a large amount of flight
verification, the high-voltage transmission line UAV autonomous inspection system
designed in this chapter greatly improves the inspection efficiency and reduces the
cost of inspection manpower and material input. It also combines object detection
technology, which makes the inspection system more intelligent.
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5 UAV High-voltage Power Transmission Line

Autonomous Correction System Based on Ob-

ject Detection

5.1 Introduction

In recent years, drones have played an increasingly important role not only in peo-
ple’s daily lives but also in the rapid rise of industrial applications209,210. Inspection
operations are areas where drones are often involved, and in many inspection oper-
ations, the drones are still manually manipulated to take pictures and store them in
the SD card, and after the flight mission is over, the inspector checks the pictures.
At the same time, to ensure the stable transmission of electrical energy, the high-
voltage power transmission line needs to be inspected almost every year and manual
inspection is time consuming and costly211,212,213.

(a) (b)

Figure 5-1: (a) The object is far from the center of the picture. (b) The object is
close to the center of the picture.

In this chapter, real-time dynamic carrier phase differential technology is applied
to UAVs, which rely on precise tasks issued by the central station and then fly
autonomously to take pictures, saving time. However, due to the environment,
electromagnetic interference, and other factors, the location point of the UAV has
some error, as shown in Figure 5-1(a) (this is the figure of a dangling line clip in
the high-voltage power transmission line, which protects the fiber optic cable by
absorbing any auxiliary shock), because of which, the target is far from the center
point of the picture. However, the results of the inspection are more inclined to the
effect shown in Figure 5-1(b), making the inspection more accurate. For this reason,
this chapter applies object detection to the UAV inspection task to determine the
location of the object, keep the target in the center of the picture as much as possible,
and then upload the high-definition picture to the server for real-time viewing by
the inspectors. The main contributions of this chapter are as follows:

(1) During the autonomous operation of the drone, the problem of the target not
being in the center of the picture when the drone is taking pictures at a high
altitude is solved and the efficiency and accuracy of the inspection is improved;

(2) Some applied optimization schemes based on the YOLOX model are proposed,
and the optimized model is applied to the UAV, which enables the UAV to
obtain real-time target information;

(3) A complete correction system is designed, including a control module, a path
planning module, error conversion, and some strategies.
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5.2 Related Work

Traditional object detection algorithms are adapted to situations with obvious fea-
tures and simple backgrounds, while in practical applications, the backgrounds are
complex and variable, as are the targets to be detected, making it difficult to de-
tect targets by means of general abstract features. Deep learning can extract rich
features of the same target and complete target detection. Sometimes, the abstract
features of the target cannot be summarized in various complex and variable sit-
uations. So, one has to revert to the second-best method and use the huge and
rich data to complete the training of the model through deep learning, which makes
the algorithm more robust, more generalizable, and easier to apply to practical
scenarios. Although the method proposed by Ma et al.214 shows good results for
insulator detection, it has low generalizability and is not applicable to the research
in this paper. Nowadays, deep-learning-based object detection can be roughly di-
vided into three categories: (1) One-stage detection methods, such as YOLO and
SSD33,35,34,36,38. (2) Two-stage detection methods, of which the most representa-
tive is Faster RCNN29. The inference speed of the one-stage detection method is
relatively high, unlike the two-stage detection method, which has high localization
and target recognition accuracy and relatively low inference speed. (3) The anchor-
free object detection algorithm, which is divided into two main types: the Dense
Prediction type represented by DenseBox215, which intensively predicts the relative
positions of boxes, and the Keypoint-based Detection type, represented by Corner-
Net40, which focuses on detecting target key points. There are many areas of daily
life in which object detection is required, such as overhead vehicle detection, helmet
detection, and animal detection216,217,128.

Object detection algorithms are also becoming more widespread in power in-
spections. For example, the Improved YOLOv3 Network proposed by Liu et al.
has not been validated for practical deployment218, although the model has supe-
rior performance and runs faster on GPU. The models proposed by Li et al.219 and
Rahman et al.132 did not undergo actual flight tests, although they compared the
performance of the YOLO series models on their own datasets. The improved Faster
R-CNN proposed by Liu et al.220 and the network model proposed by Miao et al.221

although high in accuracy, have poor real-time performance and are not applicable
to the real-time detection of UAVs. The model proposed by Wang et al.222 is for
large resolution 3968×2976 images, which are impractical to process in real time
on UAVs with limited hardware resources. As mentioned above, although there
are many object detection models with high accuracy, the real-time performance is
relatively poor. Moreover, many researchers do not use specific data from electrical
towers for path planning, so operators are required to fly manually to collect data.
However, In this chapter, in addition to sensor data acquired during autonomous
flight, a database of the position and attitude of electrical towers in the power grid
is used as prior knowledge to achieve rational path planning and autonomous flight
operations.

There is also a lot of research on UAS for electrical tower inspection. Calvo et
al.185 proposed a complex mission planning scheme for UAS that makes UAS more
automated. The UAV inspection system proposed by Li et al.184 incorporates image
processing technology, which makes the inspection more intelligent. The power line
inspection system proposed by Hui et al.223 basically detecs and tracks targets, but
the real-time performance is poor. The power line inspection system proposed by
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F. Luque-Vega et al.186 uses a TIR camera, which makes it more sensitive to the
devices and components in the line. However, all the above systems ignore one
problem: the UAV will have some accuracy error at the mission point, because of
which, the target in the picture will deviate from the center, making the acquired
data inaccurate.

To address the above problems, in cooperation with electric power companies,
we have developed a UAV high-voltage power transmission line autonomous correc-
tion and inspection system. In this chapter, we have designed a lightweight object
detection model based on YOLOX194 to achieve real-time detection on UAS and
also designed a error correction algorithm to ensure that, as far as possible, the
object remains in the center of the picture. This method not only enables intelligent
inspection to be more accurate and efficient but also collects higher-quality data.

5.3 Structure of The System and Methods

In this section, we first introduce the structure of the system, explain the framework
of YOLOX, and make some application-specific improvements to YOLOX. We then
present the algorithm of pixel error to actual error. We, finally, introduce the UAV
autonomous correction inspection system.

5.3.1 Structure of The System

Figure 5-2 presents the structure of the system. First, we collect the corresponding
dataset using the team’s self-developed UAV. Then we train the object detection
model for this experiment on a desktop computer and deploy the trained model to
the Xavier NX. The system works as follows: It transfers the images captured by the
camera in real-time to Xavier NX for processing. Xavier NX calculates the actual
distance error based on the pixel error and transmits this error to the flight control
system. The flight control system calculates the position points to be adjusted based
on its own latitude, longitude, altitude, heading angle, and actual distance error.
Finally, the system uses position control and altitude control to fly to the location
point so that the target is as centered as possible in the picture.

The underlying system layer mainly involves camera drivers, storage drivers,
hardware drivers, and drivers for various sensors. The framework layer mainly con-
sists of the Robot Operating System (ROS), the Pytorch deep learning framework,
and computer open source libraries such as OpenCV. The application layer mainly
includes the flight control node, the fixed flight node, and the MAVROS communi-
cation node, where the connection between the application layer and the framework
layer is established through the MAVROS communication node.

5.3.2 Improved YOLOX tiny

In this chapter, to balance the accuracy and speed of the model, we improve the
model on the basis of YOLOX tiny: (1) To improve the generalizability of the model,
we adopt reasonable data enhancement methods. (2) To reduce the amount of com-
putation and speed up the inference of the model, the backbone of YOLOX tiny is
changed to MobileNetv3224. (3) To reduce the number of parameters and compu-
tation of the model under the premise of guaranteeing accuracy, we introduce the
Ghost module and depthwise convolution225. (4) To operate with focus over a larger
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area, we introduce coordinate attention197, which embeds location information into
channel attention, enabling lightweight networks. (5) To improve the accuracy of the
bounding box regression, we introduce the α-DIOU226 loss function. The optimized
model is shown in Figure 5-3. We also made some application improvements based
on YOLOX in another accepted article, which focuses more on accuracy because it
is deployed on a server171, while this chapter focuses more on speed because it is
deployed on a UAV.

Reasonable Data Augmentation

After extensive experiments, it was found that Mosaic data augmentation had
little effect on the dataset for this experiment, prolonged the training time, and
greatly reduced the convergence speed. Therefore, in the experiments, we turned off
Mosaic data enhancement was turned off. Reasonable data augmentation ensuress
that the model is more generalizable. Considering that the light intensity and the
inclination angle of the UAV are the main factors affecting this experiment, the
pictures in the dataset are adjusted to a certain brightness and some small angles
are rotated within plus or minus 10°. The enhanced dataset reduces the possibility
of model overfitting and solves the problem of sample imbalance.

Lightweight Backbone

In real projects, an effective way to lighten the model is to replace the backbone.
The backbone of YOLOX is CSPDarkNet53. In this chapter, we introduce Mo-
bileNetv3 as the backbone of YOLOX tiny. MobileNetv3 first performs a search for
coarse structures using MnasNet and then uses a reinforcement learning approach to
determine the optimal configuration from a set of discrete choices. The architecture
is then fine-tuned using the NetAdapt architecture, which is able to adjust under-
used activation channels with a relatively small drop. A novel idea of MobileNetv3
is to include squeeze-and-excitation networks (SENet) in the architecture166. The
core idea of SENet is to model the interrelationship between feature channels in a
display manner so as to automatically obtain the importance of each channel in the
feature map by learning and then enhance the useful information and suppress the
information that is not useful for the current task according to this importance. The
SENet structure consumes a certain amount of time, but changing the channel of the
expansion layer to 1/4 of the original one improves the accuracy without increasing
time consumption.

MobileNetv3 is an image classification network, and to classify images, the net-
work ends up using global pooling and a fully connected layer, which is redundant for
the object detection model. To replace the backbone of YOLOX tiny, the network
structure before 32-fold downsampling is retained in the experiment and the feature
maps of 8-fold downsampling, 16-fold downsampling, and 32-fold downsampling are
used as the output of the backbone, which not only reduces the computation effort
of the model but also satisfies the structural design of the object detection model.
At the same time, to ensure the normal operation of the neck part, the number of
input channels of the three neck feature maps is set to the number of output chan-
nels of the corresponding MobileNetv3 feature maps, where the number of output
channels of 8-fold downsampling, 16-fold downsampling, and 32-fold downsampling

83



5 UAV HIGH-VOLTAGE POWER TRANSMISSION LINE AUTONOMOUS
CORRECTION SYSTEM BASED ON OBJECT DETECTION

are 24, 48, and 576, respectively. Figure 5-4 provides the details.

Lightweight Neck

After the model extracts the features, an image can have many feature maps but
some of the feature maps may have high similarity, leading to some redundancy in
the feature maps in the neural network227. Consider the possibility of replacing the
traditional convolution with a convolutional layer with a smaller number of output
feature maps and another operation that increases redundancy and is less com-
putationally intensive, which not only reduces redundancy to ensure accuracy but
also reduces the overall computation effort of the network. Therefore, we introduce
depthwise convolution and the Ghost module to replace the normal convolution in
the neck. The Ghost module consists of two parts, the normal convolutional layer
and the lightweight linear transform layer (depthwise convolution). The function
of depthwise convolution is that the feature map of one channel is used as input,
the feature map of one channel can be output, and the channels are separated from
each other. Figure 5-5 presents the structure of the Ghost module. Firstly, normal
convolution is used to compress the input feature maps in the channel. Then, more
feature maps are obtained using depthwise convolution. Finally, the different feature
maps are stitched in the channel dimension and combined into a new feature map.

Coordinate Attention

This part has been introduced in Section 4.3.6 and will not be repeated here.

Bounding Box Regression

Currently, Intersection over Union (IOU) loss function is mainly used in the field
of object detection. The calculation of IOU loss function is relatively simple. The
IOU loss function is obtained by dividing the intersection area of the label box and
the prediction box by the combined area, taking the obtained value as the base
logarithm of e, and then taking its negative value. The GIOU loss function150 is
improved by using the outer and intersecting rectangles of the label box and the
prediction box for the calculation, which improves the performance of the model. A
disadvantage is that GIOU degenerates into IOU when the label box is parallel to
the prediction box. In addition, the convergence of GIOU and IOU is slow, while
the regression is not precise enough. Only the IOU and GIOU codes are provided
in the official code of YOLOX. Therefore, in this experiment, to further improve
the accuracy of the model, we introduce DIOU203 and α-DIOU loss functions. The
DIOU loss function introduces the distance between the label box and the center
point of the prediction box and the length of the diagonal of the minimum outer
rectangle, which makes the regression more accurate. The α-DIOU loss function,
shown in equation (5-2), improves the regression accuracy of the bounding box by
adaptively re-weighting the losses and gradients of high and low IOU objects. The
α-DIOU loss function is more favorable to the lightweight model. Therefore, in this
chapter, α-DIOU loss to further improve the accuracy of the model, and here, α=3.
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Conv

Input Output

Identity

Φ1 Φ2 Φ3

. . .

Figure 5-5: The structure of the Ghost module. Identity is equivalent to a carry
operation without any convolution calculation. ϕ indicates the extraction of features
using depthwise convolution.

LDIOU = 1 − IOU +
ρ2(b, bgt)

c2
(5-1)

Lα−DIOU = 1 − IOUα +
ρ2α(b, bgt)

c2α
(5-2)

5.3.3 Pixel Error to Actual Error

During the actual mission, the drone detects the corresponding target and obtains
the pixel position of the target in the picture and the pixel error from the center
point. However, the system needs to convert the pixel error into the actual distance
error and thus adjust the position of the drone so that, as far as possible, the target
is in the center of the picture.

For different targets, the zoom magnification of the lens must be determined so
that the target in the picture is coordinated. According to the imaging relationship,
the image distance can be calculated, as shown in equation (5-3), where Ih denotes
the height of the image sensor, u is the object distance (the distance between the
camera and the target), H is the actual height corresponding to the screen where
the object distance is located, and v denotes the image distance.

Ih
H

=
v

u
⇒ v =

Ih × u

H
(5-3)

1

fc
=

1

u
+

1

v
(5-4)

The Gaussian imaging equation (5-4) is substituted into the equation (5-3) to
obtain equation (5-5), which is for calculating focal length.

fc =
Ih × u

H + Ih
(5-5)

The zoom multiplier T is calculated as T = fc/f , which is substituted into
equation (5-5) to obtain equation (5-6).

T =
Ih × u

(H + Ih) × f
(5-6)

In the above, fc is the actual focal length and f is the minimum focal length, and
the values of u and H at each target location are included in the mission information

86



5 UAV HIGH-VOLTAGE POWER TRANSMISSION LINE AUTONOMOUS
CORRECTION SYSTEM BASED ON OBJECT DETECTION

sent from the ground station. Although the UAV in this experiment uses real-time
kinematic (RTK)228, due to various environmental factors, the value of u will still
have some error in the actual correction, within plus or minus 15 cm. According to
equation (5-6), the actual error corresponding to the pixel error can be inverted, as
shown in equations (5-7) and (5-8).

∆H =

∆y
Cy

× Ih × u

f × T
− Ih (5-7)

∆W =
∆x
Cx

× Iw × u

f × T
− Iw (5-8)

∆y and ∆x represent the pixel difference between the height and the width of
the target from the image centroid, respectively, and Cy and Cx represent the pixel
values of the actual image height and width, respectively. Iw denotes the width
of the image sensor, and ∆H and ∆W denote the actual error corresponding to
the pixel error in the vertical and horizontal directions. In the actual experiment,
Cy = 768, Cx = 1024, Ih = 5.65mm, Iw = 9.35mm, and f = 6.7mm. In the
calculation, the units should be consistent. Otherwise, the calculation results will
have large errors.

5.3.4 UAV Autonomous Correction Inspection System

This section briefly introduces the entire process of UAV power inspection. The
UAV consists of three main parts: a path planning module (PPM), a vision-based
correction module (VCM), and the servo control of the UAV module (SCM). The
PPM is realized by the ground station, which automatically plans an autonomous
flight path that conforms to the tower according to the relevant information of the
electric tower to be inspected. The VCM acts in the arrival stage of the aircraft
position point, mainly for the problem that the target to be inspected deviates from
the center of the image. The SCM is the basis of the entire inspection system195.

Path Planning Module

In the PPM, each key location of the autonomous flight path is generated by the
base information of the target tower to be inspected, which includes the latitude,
the longitude, the direction, the tower height, and the type of the tower. Each type
of tower has its fixed properties, such as a fixed crossbeam length and the height dif-
ference between the crossbeams, taking the tower shown in Figure 5-6 as an example
(Since it is the same task, so the path planning is consistent with the path planning
in the section 4.3.2 ). After the coordinates of the tower center and its direction
are known, the expression of the linear equation of points 2 and 8 in the world co-
ordinate system can be determined perpendicular to the direction and through the
tower center coordinates. The specific latitude and longitude information of points
2 and 8 can be determined by combining the maximum crossbeam length and the
safety distance. The safety distance is to prevent the high voltage from affecting
the drone magnetometer and the GPS. Combined with the tower height, the spe-
cific 3D information of the point can be obtained. The target heading of point 2 is
perpendicular to the direction of the tower toward the side of the tower, while the
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Figure 5-6: Path planning diagram. The orange dots in the figure indicate the
mission points of the UAV.

specific location information for points 3, 4 and 5 can be obtained by subtracting
the height difference of the crossbeam from the information for point 2. Points 9,
10, and 11 can be obtained in the same way according to point 8. As for points 6
and 7, they are determined by adding a certain safety distance on top of points 2
and 8, respectively.

Vision-based Correction Module

The autonomous flight path planned according to the tower information will
enable the UAV to collect the image information of each target object in the tower
well. The waypoints and path planning positions are precise, so the error depends
on the accuracy of the drone positioning. The error in the position of the RTK
into the fixed solution is very small, and it is almost guaranteed to reach a very
precise position every time. However, the high voltage of the towers, the thickness
of the clouds can cause some signal interference, the number of satellites in the sky
at different times can have an effect, and excessive wind speed can also cause the
position of the UAV to deviate, thus causing the target object to deviate from the
image center and even incomplete data collection, this will have a great impact on
the later inspection work. While VCM can correct the position of the UAV based
on the information of the detected target in the image, and this process is shown in
Figure 5-7.

From equations (5-7) and (5-8), the pixel error can be converted into the actual
distance error, which is the actual error distance of the target from the Y-axis and
Z-axis of the UAV. In UAS, the input position target is usually represented in the
form of latitude and longitude. therefore, we also need to convert the position
error into the latitude and longitude coordinate system. The conversion is shown in
equations (5-9) and (5-10), where M and N is the latitude and longitude information,
respectively, of the current location of the UAV; OW is the distance of the object
from the Y-axis of the UAV; a indicates the direction perpendicular to the current
heading of the UAV, which is related to whether the target object is located on the
left or the right side of the UAV; p and q are the relationship coefficients between
the actual distance and the latitude and the longitude, respectively, determined
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by the current latitude and longitude; and X and Y are the corrected longitude
and latitude information, respectively, of the target location. For the actual error
distance in the Z-axis direction, it is only necessary to modify it on the basis of the
current target height. In this way, the flight point position of the UAV is adjusted
according to the pixel error of the target recognition result, which can finally ensure
that the target is in the center of the acquired image, thus ensuring the effectiveness
of data acquisition.

X = M + (OW ∗ cos(a)

p
) (5-9)

Y = N + (OW ∗ sin(a)

q
) (5-10)

Servo Control of UAV Module

UAS is used to perform the entire inspection, and the UAV control system adopts
a string control structure, including position control, speed control, attitude control,
and stability control, as shown in Figure 5-8. Since the results of PPM and SCM
calculations are related to the 3D position, the focus is on the two upper layers of
the UAV: position control and altitude control. We apply the PD control algorithm
in the upper-level control, using the task points calculated in PPM and SCM as
target points for control. In position control, we calculate the target information
required for speed control by combining the target position information, latitude,
and longitude with the current state. We calculate the error between longitude and
latitude separately and convert this error into distance error to obtain the actual
error distance in the N, E direction. Considering that the distance between the target
position and the current position may be too large, to ensure control accuracy, it is
also necessary to limit the error distance processing so that when the distance error
is small, the UAV can also respond in time. In this case, the calculation process
of the velocity target value in the N direction, for example, is shown in equation
(5-11).

VN−ref = Kp1 · Sat(xref − x) + Kd1 ·
d(Sat(xref − x))

dt
(5-11)

Where x represents longitude, Kp1 and Kd1 are the control coefficients, and
the Sat(x) function is the saturation function to limit the excessive distance error.
Similarly, the target value in the E direction is shown in equation (5-12), where y is
the latitude.

VE−ref = Kp1 · Sat(yref − y) + Kd1 ·
d(Sat(yref − y))

dt
(5-12)

For height control, we still use PD control. We can calculate the control amount
of height direction by combining the target value of height with the current height,
as shown in equation (5-13).

uThr = Kp2 · Sat(href − h) + Kd2 ·
d(Sat(href − h))

dt
(5-13)
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5.4 Experiments

In this section, first, we introduce the dataset used in this chapter, the evaluation
metrics of the model, and the training method. Then, we conduct ablation experi-
ments to verify the performance of the model, followed by actual flight verification.
Finally, a comparison is made with other high-voltage power transmission line in-
spection systems.

5.4.1 Dataset Introduction

In this study, the dataset was obtained mainly using self-developed UAV flights.
After receiving the task from the ground station, the UAV performs the photo
operation according to the location points, as shown Fig. 10. To build the dataset
for this experiment, the UAV autonomously recorded and photographed during the
operation. The dataset of this experiment mainly includes electric towers, voltage
equalization rings, insulators, and overhanging wire clamps. The experimental site
is in Xuzhou City, Jiangsu Province, China, and the experimental equipment is the
UAV shown in Figure 5-9. For this experiment, about 4000 images were collected
from the dataset.

Aerial mission

path planning

Figure 5-9: Image of part of the dataset.

5.4.2 Evaluation Metrics

This part has been introduced in Section 4.4.2 and will not be repeated here.
Speed is another important metric to measure the object detection model. Only

fast enough to achieve real-time processing, this metric is called frames per second
(FPS), which is the number of images processed per second.

5.4.3 Model Training

The hardware platform for this experimental training model is as follows: the GPU
is GeForce RTX3090, the CPU is Intel(R) Core(TM) i9-12900K, the video memory

92



5 UAV HIGH-VOLTAGE POWER TRANSMISSION LINE AUTONOMOUS
CORRECTION SYSTEM BASED ON OBJECT DETECTION

is 24G, the OS is Windows 11, the application development language is Python,
and the deep learning framework is Pytorch. For end-to-end training of the model
in the experiments, we used a stochastic gradient descent method. The parameters
of model training are set as follows: the size of the batch is 32, the initial learning
rate is set to 0.01, the weight decay is set to 0.0005, the size of the input network
image is 768×1024, no Mosaic data enhancement is used, and the L1 loss function is
increased from the beginning of training. Other parameters are basically the same
as the training parameters of YOLOX.

5.4.4 Comparison of Models

YOLOX is currently one of the better balanced object detectors in terms of speed
and accuracy. YOLOX has six different versions: YOLOX s, YOLOX m, YOLOX l,
YOLOX x, YOLOX tiny, and YOLOX nano. YOLOX tiny is a lightweight model,
suitable for robotics, UAVs, and other airborne embedded deployments, so we chose
YOLOX tiny as the baseline.

To verify the feasibility of the improved method, we conducted a series of ab-
lation experiments, as shown in Figure 5-10 and Figure 5-11. For the backbone of
the model, in the experiments, two smaller backbones in image classification were
selected to replace CSPDarkNet53 in YOLOX tiny, ShuffleNetv2 and MobileNetv3,
where MobileNetv3 is the small version. Since the mAP 0.5 of YOLOX tiny is
overfitted after training more than 200 epochs, and the accuracy of mAP 0.5:0.95
also tends to be flat, only 300 epochs are trained. ShuffleNetv2 and MobileNetv3
converged slower than CSPDarkNet53, so with ShuffleNetv2 and MobileNetv3 as
the backbone, the model was trained for 500 epochs. The experimental results
show that the network model with ShuffleNetv2 as the backbone runs much slower,
despite the improvement in accuracy over the baseline. The network model with
MobileNetv3 as the backbone is 0.006 and 0.003 percentage points lower than the
baseline in mAP 0.5 and mAP 0.5:0.95 metrics, respectively, but the operation
speed is improved by about 20 FPS, so we selected MobileNetv3 as the backbone of
the baseline.

  0          100        200        300       400        500  

mAP_0.5
tag: val/mAP_0.5

epoch

0.94

0.92

0.90

0.88

0.86

0.84

Yolox_tiny

Yolox_shufflenetv2
 Yolox_mobilenetv3

Yolox_mobilenetv3_ghost

Yolox_mobilenetv3_ghost_CA

Figure 5-10: The mAP 0.5 data curve under different models.

93



5 UAV HIGH-VOLTAGE POWER TRANSMISSION LINE AUTONOMOUS
CORRECTION SYSTEM BASED ON OBJECT DETECTION

  0          100        200        300       400        500  

0.62

0.58

0.54

0.50

epoch

mAP_0.5:0.95
tag: val/mAP_0.5:0.95

Yolox_tiny

Yolox_shufflenetv2
 Yolox_mobilenetv3

Yolox_mobilenetv3_ghost

Yolox_mobilenetv3_ghost_CA

Figure 5-11: The mAP 0.5 : 0.95 data curve under different models.

Based on YOLOX mobilenetv3, Ghost module and depthwise convolution are
introduced in the neck to further verify the performance of the model. The experi-
mental results show that the improved network model is basically the same than the
original model in terms of inference speed, but improves 0.006 and 0.004 percentage
points in mAP 0.5 and mAP 0.5:0.95 metrics, respectively, while the number of
parameters of the model is greatly reduced, almost reducing the number of parame-
ters by nearly half. Then the attention mechanisms such as SENet, CBAM and CA
are added to improve the accuracy of the model respectively, and the experimental
results show that the performance of adding CA to the model is optimal. The model
improved 0.003 and 0.002 percentage points over SENet and CBAM, respectively,
in the mAP 0.5 metric, and 0.008 and 0.006 percentage points in the mAP 0.5:0.95
metric. YOLOX mobilenetv3 ghost CA compared to YOLOX tiny, the number of
parameters is reduced by 2M and Gflops by 5.92. mAP 0.5 and mAP 0.5:0.95 are
improved by 0.1 and 0.14 percentage points respectively, while the running speed is
increased by about 15 FPS. The details are shown in Table 5-1.

On the basis of the above, we introduced α-GIOU, DIOU, and α-DIOU to im-
prove the accuracy of the bounding box regression. mAP 0.5 and mAP 0.5:0.95
curves are shown in Figure 5-12 and Figure 5-13. As per the figure, the perfor-
mance of α-DIOU is optimal. α-DIOU improves the AP 0.5:0.95 metric by about
1 percentage point compared with IOU and GIOU.

To further validate the performance of the model, we compared the improved
model with other models, as shown in Table 5-2, where FPS is the speed of the
model deployed on Nvidia NX. The results show that the improved model reduces
by 4.98M, 2.75M, 0.67M, and 2.01M in terms of the number of parameters compared
to YOLOv3 tiny, YOLOv4 tiny, Efficientdet-d0, and YOLOX tiny, respectively. In
the mAP 0.5:0.95 metric, although it is 0.003 lower than Efficientdet-d0, it is more
accurate than any other model and the improved model is also fast (2.8 times faster
than Efficientdet-d0) and achieves almost the same speed as YOLOX nano.
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Figure 5-12: The mAP 0.5 data curve Under different loss functions.
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Figure 5-13: The mAP 0.5:0.95 data curve Under different loss functions.

Table 5-2: Performance comparison of different models
Methods Par mAP 0.5 mAP 0.5:0.95 FPS
YOLOv3 tiny 8M 0.865 0.573 50
YOLOv4 tiny 5.77M 0.926 0.594 48
Efficientdet-d0 3.69M 0.948 0.632 20
YOLOX nano 0.9M 0.728 0.436 60
YOLOX tiny 5.03M 0.932 0.608 50
Ours 3.02M 0.951 0.629 56

This table compares our improved model with other models, where the bolded font is the best
performer, but in terms of speed and accuracy combined, the model we provide is the best.
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5.4.5 Test of Actual Flight

To verify the effectiveness of the proposed correction system, it is necessary to carry
out an actual flight in a real environment. In the experiment, we used the team’s self-
developed inspection UAV as the validation platform. The flight controller moth-
erboard is designed with an integrated dual processor, where the STM32F427ZIT6
based on the CORTEX-M4 core is used to receive and process data from the net-
work RTK module and to perform calculations to provide high accuracy position
information for the inspection drone; the STM32H753VIT6, based on the CORTEX-
M7 core, runs the inspection drone control program, which receives and processes
data from the individual sensor units for data fusion and ensures stable flight of
the inspection drone. The whole system integration board uses dual processors for
simultaneous operation and fuses discrete functional units designed into the inte-
grated main board. The main integrated units are the data transmission unit DTU,
the data recording unit FDR, the status indicator LED, the CAN signal hub and
the power supply voltage conversion unit. For safety reasons, the verification object
chosen was a linear pole tower in an unoccupied and open area in Xuzhou City,
Jiangsu Province, China, and was approved by the relevant authorities for multiple
flight verification. The experimental procedure is shown in Figure 5-14.

Figure 5-14: Actual experimental environment.

The detailed settings and parameters of the drone are as follows: size 600 × 600
× 450 mm, total take-off weight 6.85kg, battery capacity 22000 mAh, flight time
about 42 min, ascent speed 3 m/s and descent speed 2 m/s. The position controller
is implemented through P control with the parameter Kpp = 0.076. The speed
controller is implemented by a PID controller with the parameters Kpv = 0.076,
Kiv = 0.016, and Kdv = 0.02, respectively. In the attitude controller, roll and pitch
attitude are controlled by P of Kpa = 600 and the yaw direction is controlled by
P of Kpy = 1500. The height controller is implemented using the PID method,
where Kph = 300, Kih = 200, and Kdh = 10. Finally, the underlying controller is
implemented by a PID control with parameters Kps = 60, Kis = 160, and Kds = 3.
The experimental results will be discussed and analyzed next.

Data of The Flight

The UAV took off from an open area near the pole tower and completed the in-
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spection operation according to the process described in Section 5.3.4. For analysis,
the actual latitude and longitude of the UAV have been converted into the actual
distance in the (N, E, D) coordinate system. As shown in Figure 5-15, the UAV
took off from (0,0,0), inspected the pole tower with coordinates (-117, 103, 46), and
returned to the starting point after the inspection was completed. The detailed
trajectory of the inspection process and the actual target point location are shown
in Figure 5-16, where the red dots are the actual target location information of the
UAV. It is worth noting that the target points B to L in the figure correspond to
points 1 to 11 in Fig. 7, which means that the UAV can work exactly as the expected
flight path. Figure 5-17 presents the velocity target value during the process with
its tracking.
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Figure 5-15: The complete flight path of the UAV.
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Figure 5-16: Mission trajectory of the UAV. The red dots are mission points for
UAVs.
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Figure 5-17: Results of speed control. The dashed red line is the target velocity, and
the solid blue line is the actual velocity. (a), (b), and (c) correspond to the tracking
effect of the UAV in the N, E, and D directions, respectively.

From the description in Section 5.3.4, it is clear that the speed control of the
UAV, as the middle part of the whole control system, has a tracking accuracy that
can well characterize the effectiveness of the UAV flight. Figure 5-17(a) shows the
target and the actual values of the velocity in the N direction, Figure 5-17(b) provides
information in the E direction, and Figure 5-17(c) shows the target and actual values
of the velocity in the vertical direction of the UAV. These results indicats that
the UAS can have good tracking performance and can follow the planned target
trajectory exactly.

During the whole flight, the resolution size of the image was 768×1024. Fig-
ure 5-18 shows the result of object detection. Figure 5-18(a) shows the error of the
horizontal coordinate of the target rectangular box from the center of the picture,
and Figure 5-18(b) shows the error of the vertical coordinate of the target rectan-
gular box from the center of the picture. The values -512 and -384 are intended to
be distinguished from the 0 value, specifically refers to the case where no target is
detected in the image, and the 0 value refers to the case where the UAV does not
perform a correction of deflection. Figure 5-18(c) and Figure 5-18(d) show the width
and the height of the target rectangular box, respectively. To view the details of the
correction more specifically, the object detection results and the UAV target latitude
and longitude are shown in Figure 5-19 and Figure 5-20 for the data from 320 s to
360 s, respectively. As can be seen in Figure 5-19, at 330 s, the object detection
system detects the presence of the target, and after calculating the desired target
point location based on equations (5-9) and (5-10), the control system substitutes
the newly generated point location as the new target value for the calculation, and
the time points of this process can correspond exactly to the time points of the tar-
get latitude and longitude as well as the target height change process in Figure 5-20.
And it can be seen in Figure 5-19(a), (b) that the center point of the target rectan-
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Figure 5-18: (a) and (b) are the pixel difference between the centre of the target
and the centre of the image. (c) and (d) are the pixel values of the height and width
of the target external rectangular box.

gular box keeps converging from 330 s to 338 s. The experimental results are fully
able to show that the proposed correction system is actually effective. There is no
object detection between 340 s and 350 s so the value is 0.

Result of Image Correction

Figure 5-21 shows the actual corrective deflection results. The center of the
viewpoint of the UAV is clearly getting closer to each target step by step, and
although there is still some error, the problem of the target deviating from the
center of the picture has basically been resolved. In Figure 5-22, the initial position
of the target is closer to the center, which is the main reason why the correction is
not too obvious. An object detection model that inputs a graph, outputs a tensor,
and then goes on to parse the tensor, which contains information about the box
position, the probability of belonging to each category, etc. It is just that in the
deployment, this part of the information is not shown in the video. In general, there
is usually only one target at the waypoint location, and if other targets have an
impact on the model, we choose the target with the highest probability value for
position adjustment.

5.4.6 Comparison of Systems

We also compared our system with other system solutions for high-voltage power
transmission line inspection, as shown in Table 5-3. Although Yang et al.193 and
Nguyen et al.192 applied deep learning to high-voltage power transmission line in-
spection system to improve the efficiency and accuracy of detection, it does not have
the function of path planning and autonomous data collection. The high-voltage
power transmission line inspection system proposed by Li et al.187 and Guan et
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Figure 5-19: Local zoom information of object detection results. (a) and (b) are the
pixel difference between the centre of the target and the centre of the image. (c) and
(d) are the pixel values of the height and width of the target external rectangular
box.

Figure 5-20: Amplification information of UAV longitude, latitude and altitude
target values.
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al.188 has almost all the functions required for high-voltage power transmission line
inspection, but ignores the position error of the UAV at the mission point, which
may cause inaccurate data collection. Our proposed UAV high-voltage power trans-
mission line autonomous correction inspection system not only achieves autonomous
path planning, but also solves the problem of inaccurate data collection by UAV at
the mission point.

5.5 Discussion

The design of this system mainly considers the practical application of the au-
tonomous operation of a UAV. The lightweight model can be easily deployed on
various embedded devices to achieve real-time detection. The small calculation size,
the requirement of few parameters, and fast detection ensure that the improved
YOLOX model is extremely competitive for embedded device deployment. In sum-
mary, the system proposed in this chapter has the following advantages: (1) It can
detect the targets in the video stream in real time. (2) The improved YOLOX model
is small and easy to deploy in embedded devices, which greatly reduces the hardware
cost and is useful for practical applications. (3) The position of the target can be
adjusted in real time so that, as far as possible, the target is in the center of the
image, ensuring the effectiveness of the collected data.

Test video can be viewed at https://www.youtube.com/watch?v=rCiiynvFGDE
and the video of actual flight can be viewed at
https://www.youtube.com/watch?v=bLG6XtB2xS8. From the video, we can
see that the corrective effect of the UAV is good but the system is not good at
detecting the voltage equalization rings below the mission point. This may be
because the number of datasets belonging to this category is small, the background
at the time of detection is relatively complex, and the light intensity also produces
some influence, which is a drawback of this chapter. Next, we may need to
collect more data and perform some targeted data enhancement to improve the
generalization of the model.

At present, there are many object detection models applied to UAS, but most of
them are for real-time monitoring, and there is relatively little work on determining
object positions for correction with the help of object detection models. Of course,
in the case of rich datasets, we believe that the initial YOLOX tiny can also be used
to complete the work well. However, our YOLOX tiny has improved in terms of
precision and speed. So the improved YOLOX tiny has higher generalization with
limited computational resources.

With regard to energy consumption, we have set several strategies. For example,
the drone consumes the least amount of energy when hovering, so we can reduce
some of the energy consumption by only adjusting the camera angle and letting the
drone hover when shooting the same group of three targets. Besides, when the UAV
returns to descend, the UAV is made to land in sections, initially at a very fast
speed, and near the ground, at a low speed, to ensure safety and at the same time
effectively reduce energy consumption. In addition, the project is a collaborative
project with the electric power company and allows to get specific information about
the electricity towers (including tower type, latitude, and longitude information).
The ground station generates waypoints autonomously and is able to generate the
target heading angle (yaw) at the same time, based on the target position. Thanks
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to the RTK system on board, the accuracy of the position and heading angle is
guaranteed. During a mission, the targets will all be directly in front of the UAV,
with a position accuracy within 15 cm and an angle accuracy of plus or minus 1
degree.

5.6 Conclusion and future work

To realize high-precision autonomous inspection of high-voltage power transmission
line by UAVs, in this chapter, we designed a real-time correction system based on
the YOLOX network model. On the basis of the UAV autonomous operation task,
the corresponding dataset was built. To lighten the YOLOX network, the backbone
was replaced with MobileNetv3 and the Ghost module was introduced to reduce
the number of parameters and the amount of computation. To compensate for the
accuracy problem caused by the lightweight network, CA and α-DIOU loss function
were introduced to improve the performance of the model. The running speed is
greatly improved, while model accuracy is guaranteed. This system also implements
the conversion of pixel error to spatial position. It enables the UAV to correct its
position in time according to the pixel error. In conclusion, this chapter designs
the completed UAV correction inspection system, including vision module, control
module, and some strategies. The experiment proves that this system effectively
solves the problem of the target deviates from the center of the picture when the
UAV takes pictures during a high-altitude inspection.

At present, we have completed high-quality data collection only for the linear
tower types. We still need to design reasonable path planning and correction strate-
gies for the other tower types. Once high-quality data has been collected, we plan to
use a high-accuracy object detection model to detect various defects in the towers,
such as tilted insulator strings, shifted equalization rings, and defective locking pins.
Intelligent inspection replaces traditional manual inspection, which will greatly re-
duce labor costs and improve inspection efficiency. We hope that this research will
drive progress in the electrical inspection industry.
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6 Conclusions

6.1 Conclusion

In this thesis, we have attempted to design an intelligent inspection system for
transmission lines, and we believe we have demonstrated an effective automated
inspection system for transmission lines by UAVs, while effectively integrating object
detection techniques with UAV inspections, and our contributions are summarized
below.

(1) To facilitate the deployment of the object detection model on the UAV, we
chose Yolov5s as the baseline, and increased the value of mAP by 1.1 percent-
age points while ensuring that there was almost no decrease in speed, and the
modified object detection model was able to detect grassland animals more
accurately;

(2) To inspect transmission lines more efficiently and cost-effectively, we designed
an automatic inspection system for transmission lines by UAVs. It includes
path planning, intelligent aircraft nest, control algorithm and bird nest detec-
tion. After a large number of flight verification, this system greatly improves
the inspection efficiency and reduces the labor cost. Meanwhile this system
is integrated with object detection technology, which makes transmission line
inspection more intelligent;

(3) A real-time inspection system based on YOLOX network model is designed
to realize the high-precision automatic detection of high-voltage transmission
lines by UAV. It includes a vision module, a control module and some strate-
gies. The experiment proves that the system can effectively solve the problem
that the target deviates from the center of the image when the UAV takes the
image in the high-altitude inspection.

6.2 Future works

(1) The wildlife object detection model designed in Chapter 3 may not be applica-
ble for the nighttime work due to the lack of nighttime dataset. We think that
the problem of observing wildlife habits at night can be solved by hanging a
searchlight on the UAV to collect photos of wildlife at night in the subsequent
work.

(2) In terms of the UAV autonomous inspection system, at present we have only
completed high-quality data collection for the linear towers in the electric tower
types, and next we need to design reasonable path planning and correction
strategies for other tower types.

(3) After completing the high-quality data collection, we plan to use the high-
precision target detection model to detect various defects of the towers, such
as, tilted insulator strings, displaced equalizing rings and missing locking pins.
Intelligent inspection replaces traditional manual inspection, which will greatly
reduce labor costs and improve inspection efficiency.
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6 CONCLUSIONS

In the future, our fully autonomous electric power inspection robot is the trend
to deepen its application in the power industry. Our team hopes that through
continuous innovation and improvement works, we can better bring convenience to
the grid overhead line inspection to become the real overhead line guardian, and
jointly promote the popularization of intelligent life and the progress of the Internet
of Things science.
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