
Research on Channel Estimation
and Interference Suppression in
the OFDM Transmission System

August 2023

He He

Graduate School of
Science and Engineering

CHIBA UNIVERSITY



(千葉大学審査学位論文)

Research on Channel Estimation
and Interference Suppression in
the OFDM Transmission System

August 2023

He He

Graduate School of
Science and Engineering

CHIBA UNIVERSITY



Contents

Abstract 1

1 General Introduction 3

1.1 Background and Significance . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Wireless Propagation and Fading . . . . . . . . . . . . . . . . . . . . 5

1.3 OFDM Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Research directions in OFDM system . . . . . . . . . . . . . . . . . . 9

1.5 Research Focus of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Channel estimation . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 IUI suppression . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.3 The relation of the thesis . . . . . . . . . . . . . . . . . . . . . 15

2 Regression CNN based Fast Fading Channel Tracking using Deci-

sion feedback channel estimation 22

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Decision Feedback Channel Estimation (DFCE) . . . . . . . . . . . . 27

2.4 Conventional: GRNN-Based Channel estimation method using DFCE 28

2.4.1 Generalized Regression Neural Network (GRNN) . . . . . . . 28

2.4.2 Conventional Scheme . . . . . . . . . . . . . . . . . . . . . . . 31

i



2.5 Proposal: CNN-Based Channel estimation method using DFCE . . . 33

2.5.1 DFCE channel image . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . 34

2.5.3 Regression CNN Based Channel Estimation . . . . . . . . . . 38

2.6 Computer Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . 39

2.6.2 Regression CNN Trainings . . . . . . . . . . . . . . . . . . . . 41

2.6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Data-aided weight with subcarrier grouping for Adaptive Array

Interference Suppression 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Channel model . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Uplink Array Antenna System Model . . . . . . . . . . . . . . 55

3.2.3 SMI Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.4 Adaptive Subcarrier Grouping (ASG) . . . . . . . . . . . . . . 56

3.3 Proposal: Subcarrier grouping with data-aided weight . . . . . . . . . 58

3.3.1 Initial Weight Calculation . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Data-aided Weight Calculation . . . . . . . . . . . . . . . . . 61

3.4 Computer Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . 63

3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 Computation Complexity . . . . . . . . . . . . . . . . . . . . 65

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Conclusion 73

ii



Acknowledgments 76

List of Related Papers 78

iii



Abstract

With the improvement of the Internet of Things (IoT), a significant increase in

transmission rate and the realization of huge system capacity is essential for the

fifth generation of mobile communications (5G) and even beyond. To address this

challenge, channel estimation and user interference mitigation are critical issues for

the next generation of mobile wireless communication systems, including Orthogonal

Frequency Division Multiplexing (OFDM) systems with high spectral efficiency and

robustness against frequency-selective fading. For channel estimation, in high-speed

mobility scenarios, channel state information (CSI) estimated at the beginning of

the packet (the first OFDM symbol) is quite different from the last part because the

actual channel state changes with time. Therefore, the channel estimation accuracy

is degraded, leading to decreased communication performance. Many methods use

more pilot symbols to overcome this problem. However, it leads to a decrease

in the channel transmission efficiency. In addition, inter-user interference (IUI)

greatly impacts the performance of the system. Beamforming technology is used

as a solution to eliminate IUI. The Sample Matrix Inversion (SMI) method is a

well-known weight estimation technique for antenna arrays used in beamforming.

However, this method involves weight calculations for each subcarrier in OFDM

systems, which poses challenges regarding interference suppression performance and

computational complexity.
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This thesis focuses on investigating the above important topics in OFDM sys-

tems with two methods: machine learning-based channel estimation and data-aided

weight for interference suppression. The first method aims to improve channel es-

timation accuracy in high-mobility scenarios with low transmission efficiency. Con-

ventional estimation methods, such as decision feedback channel estimation (DFCE)

and DFCE-based GRNN estimation methods, can result in estimation errors due

to the decision-making process when time and frequency-selective fading occurs.

We focused on the time-frequency domain response of the CSIs, which can be rep-

resented as a two-dimensional image. Therefore, we newly propose a regression

convolutional neural network (CNN) based channel tracking scheme using the time-

frequency domain response of the CSIs by DFCE for training and prediction to

solve these problems. Computer simulation results demonstrate that the proposed

scheme can achieve higher BER performance and better processing time than the

conventional schemes, and it is confirmed that the proposed method is effective even

in high-speed environments. The second method is to improve the array weight to

eliminate IUI by increasing the number of samples. As a conventional method, the

adaptive subcarrier grouping (ASG) for SMI-based adaptive arrays has been previ-

ously proposed. However, this method needs to know the signal-to-noise ratio (SNR)

in advance to set the threshold, perform grouping, and take the average, causing

an insufficient number of signal samples. As a result, the ability to eliminate IUI is

limited. To overcome this problem, we propose a new method based on data-aided

weight calculation and the least mean square (LMS) algorithm by increasing the

time domain samples without SNR. The decision results and initial weight are ob-

tained by the SMI method with subcarrier grouping. Then the LMS method with

subcarrier grouping is applied to reduce the weight estimation error and the amount

of computation. Simulation results demonstrate that the proposed scheme is an

efficient approach to improving BER performance under various Rician K factors.
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Chapter 1

General Introduction

1.1 Background and Significance

The modern information society relies heavily on wireless communication sys-

tems, which have transformed how people connect and communicate. These systems

have enabled the exchange of data and information across vast distances without

physical connections, thereby revolutionizing how people and businesses commu-

nicate and operate. Among the various types of wireless communication systems,

mobile wireless communications have undergone a rapid and dramatic evolution over

the course of the last centuries [1].

In the 1980s, the first generation of the cellular network (1G) was first introduced

and it mainly enabled voice services by using frequency division multiple access

(FDMA). It can allow multiple users to communicate simultaneously by allocating

different frequencies to each user. With the introduction of cellular systems and

other groundbreaking technologies, 1G laid the foundation for the future of wireless

communication, but it relied on analog technology.

During the 1990s, the advent of the second-generation mobile communication

system (2G) marked a turning point in digital wireless communication. This new
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technology adopts time division multiple access (TDMA) which enables data coding

and compression and can offer high-quality global voice roaming service with high

resolution. Since TDMA allows users to be assigned slots separated by time on the

same frequency, it can improve the efficiency of spectrum utilization.

In the 2000s, The third-generation mobile communication system (3G) was

launched. It employed a special coding scheme which is called code division multiple

access (CDMA) to distinguish between users. It provided an information transfer

rate of at least 144 kbit/s (high-speed motion), 384kbit/s (low-speed motion), and

2kbit/s (stationary). As a result, it achieved high-speed and high-capacity commu-

nications.

In the 2010s, the fourth generation (4G) of mobile communication systems was

made accessible to consumers. It used orthogonal frequency-division multiple access

for the downlink and single-carrier FDMA for the uplink to conserve power. In

addition, it is based on long-term evolution(LTE) and provides a maximum downlink

speed of 300 Mbit/s and a maximum uplink speed of 75 Mbit/s.

The fifth-generation mobile communication system (5G) is the newest technology

standard for high-speed cellular networks in the telecommunications industry. It

was first rolled out globally in 2019 and offers significant improvements in terms of

connectivity speed and reliability. It required a peak download speed of 20 Gbit/s

per second and 10 Gbit/s per second upload speed [2]. Therefore, the advancement

and implementation of technologies to meet the ultra-high-speed and low-latency

communication requirements of 5G evolution are currently in progress, as 5G is

anticipated to be the fundamental technology for the future information society.

The above development courses of the world for mobile communications is shown

in Fig.1.1.
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Figure 1.1: Development courses of world’s mobile communications.

1.2 Wireless Propagation and Fading

The wireless transmission channel is highly dynamic and unpredictable, so ob-

taining a precise estimation of the wireless channel characteristics becomes challeng-

ing. In fact, it is necessary to know the exact channel to achieve a high-quality wire-

less transmission system. The process of radio propagation for wireless communica-

tion has three fundamental physical transmission phenomena: reflection, diffraction,

and scattering [3], shown in Fig.1.2. Reflection takes place and causes the transmit-

ter power to be reflected back to its initial path when a radio wave encounters an

obstacle that is much larger than the wavelength of the radio wave. Diffraction oc-

curs when the path of a radio wave strikes the edge of a thin barrier or a surface with

sharp bumps or small openings. Scattering is the physical phenomenon that occurs
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Figure 1.2: The radio propagation model.

when a radio wave collides with many particles with dimensions much smaller than

the transmission wavelength. The propagation path loss of radio signals emanating

from base stations is greatly affected by geographic terrain [4]. The signal can prop-

agate over a greater distance when the base station is located at a higher elevation

or further away from obstacles like trees or buildings. Radio wave propagation is

extremely complicated, sensitive to terrain, and susceptible to reflection, diffraction

and scattering, which can cause severe signal attenuation. The propagation of radio

waves is also influenced by frequency; as frequency increases, path loss increases and

the range of propagation distance decreases [5].

Fading is a phenomenon where the amplitude and phase of a non-additive sig-

nal vary with time and frequency. When scattered waves are present, the fading is
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known as Rayleigh fading, while fading that consists of both scattered and direct

waves are called Rician fading. The fading phenomenon in wireless communica-

tion can be classified into two categories: large-scale fading and small-scale fading.

Large-scale fading consists of the shadowing of obstacles that affect the propagation

of the transmitted waves, as well as the path loss as mobile objects move over large

distances. By contrast, small-scale fading is a rapid variation in signal strength over

short distances caused by multipath propagation. Multipath fading is categorized

into flat fading and frequency-selective fading based on the signal and channel band-

widths. In flat fading, the transmission channel is much wider than the bandwidth

of the transmitted signal. It causes all frequency components of the signal to be

affected nearly uniformly. In contrast, frequency-selective fading is a phenomenon

where the transmission of a signal with a wide bandwidth causes variations in the

affected frequency components. Therefore, the wider the bandwidth of the trans-

mitted signal, the more susceptible it is to frequency-selective fading. Meanwhile,

temporal changes can be classified as fast fading and slow fading. They are dis-

tinguished by the speed of signal magnitude and phase change. Slow fading occurs

when the coherence time of a channel is considerably longer than the delay, and

the signal changes slowly over time. Conversely, fast fading causes the signal to

fluctuate quickly over a short period of time when the channel’s coherence time is

significantly shorter than the delay.

1.3 OFDM Scheme

The demand for high-speed and high-capacity transmission has recently increased

significantly, leading to a growing need for wideband communications. However, the

transmission of a broadband signal, as mentioned in the previous section, is sus-

ceptible to frequency-selective fading caused by the multipath delay. The waveform
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Figure 1.3: The orthogonality of OFDM

distortions and inter-symbol interference (ISI) can severely impact the accuracy of

the decoded signal. Thus, addressing these issues is critical to ensure reliable com-

munication in the wideband transmission system. OFDM (Orthogonal Frequency

Division Multiplexing) is one of the solutions and widely used in wideband trans-

mission [6].

OFDM is a type of digital signal modulation method that converts data into

narrow-bandwidth data and arranges each subcarrier orthogonally to each other for

parallel transmission in the frequency domain. The concept of OFDM is shown in

Fig.1.3. Specifically, multiple input symbols are transformed into the time domain

by performing an inverse fast discrete Fourier transform (IFFT). The transformed

signal is then modulated by the carrier and sent from the transmitter side after the

insertion of a guard interval (GI). The received signal removes the GI, which is then

demodulated by the fast Fourier Transform (FFT) to recover the original symbols

at the receiver. OFDM achieves higher spectral efficiency compared to conventional

multi-carrier modulation methods by utilizing orthogonal carrier frequencies that
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eliminate the need for guard bands between them [7]. This is because the orthogo-

nalization allows the center frequencies of each subcarrier to overlap such that the

signal strength of the other subcarriers is located at a null point in Fig.1.3, which can

be easily extracted for separation without causing intercarrier interference. Further-

more, the serial-to-parallel conversion process performs high-speed data sequences,

and a lot of subcarriers are used for low-speed parallel transmission. Due to the low

speed of these carriers, the effect of delay spread becomes minimized. Although the

effect of ISI could be reduced by adding GI into every OFDM symbol which is longer

than the delay spread (e.g., add zero), the intercarrier interference (ICI) problem

must also be considered. To suppress ICI and maintain orthogonality between carrier

frequencies, GI is used as a cyclic prefix approach [8] where a portion of the OFDM

symbol is replicated in the GI. Because of that, the sampling process can be in one

complete cycle, and the orthogonality between carrier frequencies is maintained after

demodulation, allowing for high-quality communication. Therefore, despite multi-

path time delays, OFDM can resist interference in wideband transmission while

high-frequency efficiency can be maintained.

1.4 Research directions in OFDM system

Since OFDM transmission technology can transform a frequency-selective broad-

band channel into multiple flat narrowband channels, the channel can resist mul-

tipath propagation. In addition, OFDM can be easily combined with multiple

antenna techniques to improve communication capacity. Because of its excellent

performance, high flexibility and simple implementation, OFDM is expected to be

continued as the basis for the next generation of communication standards (Beyond

5G). Therefore, it is always a hot research topic. The research directions for OFDM

systems are shown below,
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1. Channel estimation: Channel estimation is to determine the channel state

information (CSI) between the transmitting and receiving antennas. At present,

channel estimation methods can be divided into two types: One approach is using

training sequences or pilot-based methods, which can be employed for the time-

selectivity of the channel [9]. However, this method reduces the transmission effi-

ciency due to the consumption of channel resources. The other one is blind channel

estimation. Blind channel estimation uses statistical information to obtain the chan-

nel parameters to estimate the channel. It has high transmission efficiency because

it does not occupy data resources. However, it has the problem of poor robustness

and slow convergence. In addition, semi-blind channel estimation combining the

above two methods has become the mainstream method recently.

2. Inter Carrier Interference (ICI) cancellation:

Due to problems such as carrier offset, orthogonality between subcarriers is lost,

and ICI problem is incurred. ICI self-cancellation with windowing, parallel interfer-

ence cancellation (PIC), and successive interference cancellation (SIC) as solutions

are used for ICI cancellation [10]-[12]. It is worth noting that these methods can be

combined with other signal processing methods to improve ICI cancellation perfor-

mance. For example, windowing can be combined with SIC or PIC to improve ICI

cancellation. In particular, windowing with SIC can reduce the ICI effect with lower

complexity by concentrating the ICI effect and determining the number of dominant

ICI terms [12].

3. IUI suppression: The IUI problem arises in a cellular network when multi-

ple users exist. In this situation, it leads to signal overlap and interference, which

makes it difficult for receiving side to separate and decode information from each

user. This problem is typically caused by multiple users simultaneously using the

same frequency on the wireless channel. Beamforming techniques can be employed

to mitigate the IUI problem [13]. Beamforming utilizes adaptive array antennas to

10



control the direction of transmitted signals [14], focusing the signals in the desired

direction and reducing interference while improving signal quality. However, some

methods in this technique, such as SMI (Sample matrix inversion), incur computa-

tional complexity problems in OFDM systems due to the presence of subcarriers.

1.5 Research Focus of the Thesis

Over the past two decades, OFDM has been a heavily researched topic in com-

munication systems due to its advantages in high spectral efficiency and robustness

to frequency selective fading. However, this thesis will focus on discussing two

major topics: improving channel estimation accuracy and mitigating IUI with low

complexity.

1.5.1 Channel estimation

Since the transmitted signal is affected by the channel, the recovery of transmit-

ted data requires the estimation of channel state information (CSI) at the receiver

side. In general, OFDM systems often use pilot symbols to estimate the CSI of these

specific frequencies and recover the transmitted signal. These pilot symbols are con-

sidered as known symbols and transmitted at regular intervals. On the receiver side,

CSI can be obtained using different estimation methods. The Least Squares (LS)

Estimation method [15] estimates the CSI by minimizing the squared errors be-

tween the received and estimated signals. In the Minimum Mean Squared Error

(MMSE) Estimation method, it is similar to LS estimation but takes into account

the noise variance in the received signal. In the Maximum Likelihood (ML) Estima-

tion method [16], the CSI is estimated by maximizing the likelihood function of the

received signal given the transmitted signal and the channel response. In addition,

it has high computational complexity. The block-based estimation method is to
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divide the frequency band into blocks [17]. Since the CSI of each block is estimated

individually, this reduces the computational complexity of the estimation process.

Compressed sensing (CS) estimation methods [18] use sparse signal processing to

estimate the channel response. By exploiting the sparsity of the channel response,

CS can estimate the channel response with a small number of pilot signals. How-

ever, additional channel sparsity needs to be known and has a high computational

complexity to recover the signal. Among the above methods, we use LS as the basis

for the discussion in this thesis since it has the lowest computational complexity and

does not require additional conditions.

In a high-speed moving environment, the actual channel fluctuates over time,

which causes large channel time variations in packets (symbols). The time variation

in packets is shown in Fig.1.4. Therefore, different from the static environment,

the impact of these changes cannot be ignored. Since the CSI in the last part of

the packet differs from the one in the beginning part, the pilot estimated channel

does not adequately track the temporal fluctuations of the channel, especially at the

back of a packet. Therefore, Decision directed channel estimation (DDCE) has been

proposed to overcome this problem [19]. In this method, detected symbol feedback

is used to track the channel variation.

The receiver makes a decision based on the received signal and feeds the esti-

mated signal back to the channel estimation algorithm, thus continuously updating

its estimate of the channel. The algorithm updates the estimated channel based on

the difference between the estimated signal and the received signal. This technique

is performed repeatedly, with each iteration improving the accuracy of the estimated

channel. The advantage of DDCE is that it does not require any prior knowledge of

the channel characteristics. Since the receiver can adapt to the channel in real time

based on feedback, it is particularly useful for the time-varying channel.

However, the performance of the DDCE method depends on the accuracy of the

12



time variations in packets 

Figure 1.4: time variations in packets

decision. If the channel changes very fast over time, the accuracy of the channel

estimation for the behind part of the symbols will be significantly degraded. In ad-

dition, repeated iterations can dramatically increase the computational complexity.

Therefore, high-accuracy channel estimation with low computational complexity is

critical and challenging in next-generation mobile communications.

1.5.2 IUI suppression

Inter-user interference (IUI) suppression is a vital challenge for mobile commu-

nication systems. When two users are in the same band at the same time, the

transmission of one user can seriously affect the signal quality of the other user in

the same band. At this time, inter-user interference occurs. This interference can

result in significant degradation of data rates, which can negatively impact the user

experience. Therefore, mitigating inter-user interference is particularly challeng-

ing in congested communication environments where multiple users share the same

frequency band.
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To overcome this problem, adaptive antenna array technology is one of the solu-

tions to reduce the IUI problem, as shown in Fig. 1.5. Antenna arrays are composed

of multiple antennas that are designed to receive or transmit signals in several di-

rections at the same time. Antenna arrays can provide spatial filtering to improve

the signal interference plus noise ratio (SINR) and reduce the effect of inter-user

interference [20]. By using the antenna array, the desired signal can be separated

from the interference signal, which can greatly reduce the impact of IUI on the re-

ceived signal. Antenna arrays can also increase the system capacity and improve

the overall performance of the wireless communication system. Moreover, the above

antenna array is required in combination with adaptive signal processing, such as

beamforming, which can maximize the optimization of transmission parameters and

mitigate the impact of inter-user interference [21]. In other words, the implementa-

tion of adaptive techniques in array antennas can lead to significant improvements

in the overall performance of wireless communication systems.

The adaptive signal processing in the OFDM-based system can be classified as

the pre-FFT method in the time domain and the post-FFT method in the frequency

domain [22]. In the pre-FFT method, the received signals of each element of the

antenna array are combined before FFT processing. On the contrary, the post-FFT

method is that the received signals of each element are processed by FFT processing

before subcarrier combining by subcarriers. Although the Pre-FFT method has low

operational complexity, the ability for IUI suppression is poor due to one-time signal

processing, which dramatically affects communication performance. Therefore, the

post-FFT method is usually adopted in the OFDM system.

The minimal mean square error (MMSE) adaptive array based on sample ma-

trix inversion (SMI) is a powerful adaptive signal processing method to suppress

IUI [23]. The SMI method uses frequency-domain signals for each subcarrier in

OFDM to perform user separation by calculating the channel response from the
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Figure 1.5: Antenna arrays for the IUI problem

correlation between known pilot symbols and the received signal. However, the SMI

method uses a small number of samples when obtaining the covariance matrix, which

degrades system performance. In addition, it is necessary to calculate weights for

each subcarrier, which requires an enormous amount of computation. Low compu-

tational effort as well as high precision weights, are essential for the IUI problem in

the adaptive array antenna.

1.5.3 The relation of the thesis

In recent years, the development of mobile wireless communication has led to

the advancement of the Internet of Things (IoT) and autonomous driving and has

further promoted the development of the information society. Therefore, wireless

communication is one of the essential technologies for nowadays information soci-

ety, and the demand for highly reliable communication technologies is unlimited. In

order to achieve highly reliable communication, it is necessary to provide stable com-

munication in various environments. It includes high-speed moving environments or
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situations where there is interference from many users. Therefore, various methods

are required to improve communication performance in different environments.

The focus of this research is channel estimation and IUI suppression in wire-

less communication to investigate two methods for different communication envi-

ronments, respectively: one is to use machine learning to improve the accuracy of

channel estimation under a high-speed mobile environment; the other is to expand

the number of the samples in the frequency and time domains, which can improve

the weight accuracy for IUI suppression with reducing the computational cost.

In Chapter 2, a regression convolutional neural network (CNN) based channel

estimation method using the CSIs estimated by DFCE is proposed. In the fast-

fading environment, the channel state information (CSI) in the last part of the

packet is so different from the actual channel in the beginning part. Therefore,

it is important to accurately estimate the actual CSI transition to improve the

channel compensation capability. To overcome this problem, a GRNN-based channel

compensation method has been proposed previously. This method uses the time

domain training set to nonlinearly estimate the entire channel state transition. The

training set is obtained from only the CSIs estimated by DFCE at the beginning of

the packet. However, due to decision errors, DFCE sometimes provides inaccurate

estimates of the channel state in the data symbols, especially in the behind part.

Since the CSIs in the frequency domain are also correlated, time-frequency domain

data is used to improve the accuracy of the training set. In addition, the utilization

of regression CNN has higher generalization than GRNN, which makes the channel

estimation accuracy much higher than GRNN. The simulation results show that the

proposed method has better BER performance than the conventional methods.

In Chapter 3, a novel data-aided weight with subcarrier grouping for adaptive

array antenna is proposed to suppress the IUI. To overcome the IUI problem, a

well-known method for adaptive array interference suppression, the SMI method,
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has been proposed. The accuracy of the weights is decreased due to the lack of

sufficient samples, and the computational complexity is high due to the weights be-

ing calculated separately. An adaptive subcarrier grouping (ASG) method has been

proposed to solve the above problem. In this method, subcarriers corresponding to

similar fading are grouped and the group sizes are adaptively adjusted. On account

of a scarcity of signal samples available within the confined set of pilot symbols,

the interference suppression performance is inadequate. And it must depend on the

SNR, resulting in higher computational complexity. The data-aided weight calcula-

tion method with subcarrier grouping does not require SNR or other information.

In this way, more accurate weight estimation is achieved by increasing the sample

amount. Additionally, the LMS algorithm is employed to ensure convergence with

low computational complexity while using the initial weights. The simulation results

demonstrate that the proposed scheme is an efficient approach and improves BER

performance.

Finally, Chapter 4 concludes this thesis.
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Chapter 2

Regression CNN based Fast

Fading Channel Tracking using

Decision feedback channel

estimation

2.1 Introduction

As the most widespread wireless communication method, packet-based transmis-

sion has been used. In this way, a transmitted data stream is separated into packets

and the communication channel of each packet must be estimated to achieve correct

signal recovery. Since the performance of the whole system depends on channel state

information (CSI), it is crucial for communication performance improvement to find

accurate CSI. Pilot-assisted channel estimation (PCE) [1] method is extensively used

as one of the channel estimation (CE) methods. In this method, reference signals

typically inserted at the beginning of the packet can estimate the CSIs in a static

environment, such as Wi-Fi systems. However, it is difficult to compensate for the
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amplitude and phase fluctuation in time-varying fading channels commonly asso-

ciated with high-speed mobile systems. This is because the CSI estimated by the

PCE is significantly different from the actual channel state, especially in the last

part of the packet.

In order to solve this problem, several approaches have been proposed to trace the

channel state transition. Data-aided decision feedback channel estimation (DFCE)

has been proposed in [2], [3]. The DFCE uses the difference between the received

symbols and the replica signal to estimate the channel variation corresponding to

any given data symbol directly. The replica signal is calculated by multiplying the

decision result of the transmitted signal by the CSI obtained by the PCE. In [4],

linear model approximation in time-frequency blocks was proposed. [5] has proposed

the comb-type pilot-aided channel estimation. However, these precedent channel

estimation schemes cannot accurately estimate the channel with low computational

complexity and fewer pilot signals under high Doppler frequency.

Recent advances in machine learning technology have enabled its application in

several fields. There have been many studies using machine learning techniques to

estimate CSI. Authors in [6] employed a fully connected neural network (NN) model

for channel estimation and trained it for several subcarriers using simulated data.

In [7], The authors propose a channel estimation network comprised of a convolu-

tional neural network (CNN) and a bidirectional long short-term memory (BiLSTM)

network, where the CNN is used to approximate frequency-domain interpolation

processes and the BiLSTM network is utilized for time-domain channel prediction.

However, there are still problems especially in real-time and high-speed mobile en-

vironments. Given the above background, a multilayer feedforward neural network

(MLFNN) based channel estimation and compensation method has been previously

proposed in [8], which is powerful even in high-speed environments. MLFNN with

generalization capability is employed to compensate for the channel variation and
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estimates the entire channel state transition. MLFNN is trained by partially ob-

tained CSI by DFCE in the beginning part of the packet. Although it shows good

tracking performance to cope with channel fluctuation, it needs improvement in es-

timation accuracy and computational complexity. Therefore, The improved version

of this method was proposed to replace MLFNN with a generalized regression neu-

ral network (GRNN) [9]. Because of the one-pass learning process, the generalized

regression neural network can remove the iterative training process with maintain-

ing the generalization ability. The above methods demonstrate excellent channel

tracking performance. However, the performance of the methods depends on the

accuracy of the CSI used as training data. The estimated CSI by DFCE is some-

times incorrect due to decision errors even in the beginning part of the packet, when

there is dramatic fluctuation in the channel state transition. For the above reasons,

the estimator must decrease the disparity between data-aided CSIs and actual CSIs

to further improve BER performance.

In order to solve these problems, we propose a channel estimation method based

on supervised learning where a regression CNN is trained by the CSIs in the time

and frequency domain. Since the DFCE method only considers temporal selec-

tivity, the frequency selectivity of the data-aided CSIs is dispersed everywhere, in

contrast to the continuously varying CSIs in neighbouring subcarriers. Therefore,

errors of the DFCE can be effectively diminished by supervised learning, exploiting

the two-dimensional information of CSIs in the temporal and frequency domains as

a two-dimensional image. Since the two-dimensional information of CSIs has more

complex characteristics than the one-dimensional one, it is difficult for the above NN

to extract two-dimensional channel features and perform regression. That is why

we apply CNNs, which have excellent feature extraction capabilities by performing

convolution, pooling and connecting regression layers connected to two-dimensional

input data. Because of the simultaneous processing of two-dimensional information
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to correct the frequency-selective and time-selective data-aided CSIs, the estimation

of the entire channel state transition could be more precise in a high Doppler en-

vironment. In addition, we trained the CNN using only the DFCE data under the

high Doppler environment in the offline training process, and it is efficient under

both high and low Doppler frequency in the offline estimation phase. Therefore,

the proposed method does not require an additional estimator, such as a Doppler

estimator, to track the time-varying channel. In summary, the major contributions

of this paper are the following:

(1) To mitigate the effects of erroneous CSI and reliably estimate the entire

channel state transition even when data-aided CSI is inaccurate.

(2) To obtain high channel estimation accuracy with limited pilot symbol even

under a fast-moving environment.

(3) To achieve generalization without requiring additional estimators, even in a

lower Doppler environment.

In OFDM systems (Wi-Fi systems) based on the pilot structure set at the begin-

ning of the packet, there have been few studies in recent years on tracking channel

fluctuations in an extremely high-speed mobile environment. As an example, there

is the reference [10] published in 2017. However, it has the limitation that only a

Doppler shift of 8 km/h is used as a high-speed mobile environment (It corresponds

to about fD = 37 Hz if 5 GHz carrier frequency is assumed). On the other hand, the

conditions targeted by our group are a Doppler frequency of 700 Hz, and especially

in this paper, it is assumed to be 1000-2000 Hz. It achieves good BER performance

under the most severe conditions, which is also acceptable for the millimeter wave

band adopted in recent years. This is the first time such a performance has been

achieved by applying machine learning, and it is our originality.

The rest of this paper is structured as follows. Section 2.2 denotes the channel

model and OFDM system. Sections 2.3 and 2.4 introduce conventional methods.
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Section 2.5 presents the proposed method. Simulation results are presented in Sec-

tion 2.6. Finally, Section 2.7 concludes this paper.

2.2 Channel Model

In this paper, we assume Jakes’ time-varying multipath fading channel, which is

expressed as,

h(τ, t) =
L−1∑
l=0

hl(t)δ(τ − τl), (2.1)

hl(t) =
gl√
Q

Q∑
q=1

exp [j (2πfDt cosαq + ϕq)] , (2.2)

where hl and δ denote the complex channel coefficient and the Dirac ’s delta func-

tion. τl represents the time delay of the l-th propagation path and there are L

discrete paths in total. fD denotes the maximum Doppler frequency. In addition,

2πfD can be represented by the maximum Doppler radian frequency shift ωD when

ωD = 2πfD. gl, αq and ϕq are the l-th path gain, angle of arrival of the q-th wave

and its initial phase, respectively. The normalized path gain is assumed here as∑L−1
p=0 E

[
|hl|2

]
= 1, where E [·] denotes the ensemble average operation. In non-

line-of-sight (NLOS) communication, the probability density function of |hl| has

Rayleigh distribution, as is widely known. Rayleigh fading is a type of multipath

fading that contains this distribution characteristic. We can see from Eq. (2.2)

that the channel coefficient contains a time-varying component, and the variation is

magnified in a high-speed mobile environment. The frequency response H(f, t) via

Fourier transform of the temporal impulse response can be obtained as,

H(f, t) =

∫ ∞

0

h(τ, t)exp(−j2πfτ)dτ

=
L−1∑
l=0

hl(t)exp(−j2πfτl), (2.3)
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where f denotes the frequency. The frequency response is generally not flat in a

mobile communication environment. L > 1 provides a frequency selective fading

channel where the discrete expression of |H(f, t)| varies. Due to this fading, the

received signal level and phase components vary significantly in broadband trans-

mission [11, 12].

2.3 Decision Feedback Channel Estimation (DFCE)

In this paper, single-input single-output based orthogonal frequency division

multiplexing (SISO-OFDM) transmission is assumed. The pilot symbol is inserted

into the first symbol of the packet, which can provide the reference CSI. The DFCE

can use the demodulated signal and the CSI corresponding to the PCE to estimate

the CSI of the data symbol [13]. The received signal corresponding to the m-th

subcarrier and the n-th data symbol Y (m,n) is expressed as,

Y (m,n) = H(m,n)X(m,n) +N(m,n), (2.4)

where H(m,n) represents the channel coefficient, i.e. H(m
Td
, nTs) in Eq. (2.4) where

Ts and Td denote the OFDM symbol duration and its effective symbol length without

guard interval (GI). X(m,n), and N(m,n) indicate the transmitted symbol, and

Additive white Gaussian noise (AWGN), respectively. The CSI H̃(m) at the pilot

symbol is obtained by dividing the received pilot symbol Y (m, 0) by the transmitted

pilot symbol X(m, 0), as shown below.

H̃(m) =
Y (m, 0)

X(m, 0)
(2.5)

= H(m, 0) +
N(m, 0)

X(m, 0)
.

Then, the decision result of the transmitted symbol X̃(m,n) is derived as below.

X̃(m,n) = D
[
Y (m,n)

H̃(m)

]
, (2.6)
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where D[.] represents the decision function. The adjusted CSI at the n-th data sym-

bol Ȟ(m,n) is obtained by dividing the actual received signal Y (m,n) by X̃(m,n).

Ȟ(m,n) =
Y (m,n)

X̃(m,n)
(2.7)

= H(m,n)
X(m,n)

X̃(m,n)
+

N(m,n)

X̃(m,n)
.

Due to the existence of additive noise effects, The accuracy of the adjusted CSI is

reduced and may lead to a decrease in demodulation accuracy. In order to mitigate

the noise impact, the symbols of adjacent adjusted CSIs are averaged together,

i.e. CSIs are calculated by averaging adjacent three samples [13] which denote

Ȟ(m,n− 1), Ȟ(m,n) and Ȟ(m,n+ 1),

Ĥ(m,n) =

∑n+1
k=n−1 Ȟ(m, k)

3
. (2.8)

However, decision errors are still unavoidable in this method resulting in inaccurate

CSI estimation, as shown in Fig. 2.1. It is worth noting that in the high Doppler

frequency shift environment, the channel changes from the CSI in the pilot symbol

to the one behind is extremely significant, especially in the behind part of the

data packet. That is why applying DFCE given by pilot-aided CSI in a fast-fading

environment cannot fully improve the channel tracking performance.

2.4 Conventional: GRNN-Based Channel esti-

mation method using DFCE

2.4.1 Generalized Regression Neural Network (GRNN)

GRNN has been used for the neural network portion to avoid the iterative train-

ing procedure while maintaining generalization capacity [14]. GRNN was proposed

by Donald Specht in 1991, which evaluates the probability density function to solve
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Figure 2.1: Actual CSI and DFCE CSI per subcarrier in the time variation

the nonlinear approximation problem [15]. GRNN has excellent performances in

both robust function approximation ability and learning speed. This is because it

can rapidly provide convergence to the optimal regression surface by using a prob-

ability distribution, even though the sparse training samples included inaccurate

responses. Besides, GRNN directly sets weight values to training samples regarded

as the expected response value. As shown in Fig. 2.2, the GRNN is a parallel four-

layer structure: input layer, pattern layer, summation layer, and output layer [16].

The procedure for calculating the output values of the first output neuron is

described below. x = [x1, x2, . . . , xn] denotes the input vector. ci denotes the i-th

training input vector (1 ≤ i ≤ Nt) where Nt presents the number of training sets.

The output of the i-th neuron in the pattern layer is expressed as

Ψi(x) = exp

(
−(x− ci)

◦2

r2

)
, (2.9)

where r denotes the radius of the radial basis function (RBF). This parameter can

determine the generalization capability of the GRNN by controlling the degree of

smoothness. When r is large, the ability to approximate dispersed training samples
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Figure 2.2: Architecture of GRNN.

decreases due to smoother transitions. In contrast, when r becomes very small, the

regression curve will change rapidly, causing a decrease in the prediction ability.

The output of the i-th pattern neuron in the pattern layer is multiplied by the

i-th desired response and then fed into the numerator neuron in the summation

layer. As a result, the output of the numerator neuron g1(x) is expressed as

g1(x) =
Nt∑
i=1

w1(i)Ψi(x). (2.10)

The output of the denominator neuron z(x) is expressed as

z(x) =
Nt∑
i=1

Ψi(x). (2.11)

From (2.10) and (2.11), the output of the first output neuron, y1(x), is calculated

as

y1(x) = z(x)/g1(x). (2.12)
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When the outputs in the pattern layer are seen as weights, as was previously ex-

plained, GRNN output indicates a weighted average of the required responses [17,

18]. By replacing g1 with gk and w1(i) with wk(i) , the output of the k-th out-

put neuron (k = 1, 2, . . . , No) can be calculated by using (2.9)-(2.12), where No

represents the number of GRNN outputs.

2.4.2 Conventional Scheme

This paper describes channel tracking based on GRNN as a conventional scheme

using CSI obtained through PCE and DFCE [14]. Because of the nonlinear gener-

alization capabilities, GRNN can be trained by the estimated CSIs at the beginning

and middle parts of the packet to trace the whole CSI transition accurately. In ad-

dition, this approach unnecessitates to repeat the iterative learning process. Fig. 2.3

shows the block diagram of channel estimation based on GRNN when the number

of subcarriers is Nc. Each output of GRNN corresponds to the CSI at the m-th

subcarrier (m = 1, 2, . . . , Nc − 1, Nc). In the GRNN method, the training inputs

are the center of each RBF in the pattern layer and the desired responses are to

be the weight of weighted summation directly in the summation layer. GRNN can

predict an arbitrary function that relates an input vector to the desired responses

by the training. During the GRNN training, the 1st desired response and the 2nd

one are set as CSIs estimated by PCE for the 1st symbol and by DFCE for the

10th symbol, respectively. The indices [1, 10] can be defined as the training input.

The reliability of the desired responses can be maintained by acquiring only the CSI

estimated through DFCE in the beginning part of the packet. Then, every RBF

centers on the pattern layer and multiplication values at nodes from the pattern

layer to the numerator neurons are directly defined by the training input and the

desired response, respectively. Finally, the vector containing indices for all data

symbols [1, 2, . . . , Nd]
T input the GRNN, where Nd is the number of data symbols.
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Figure 2.3: Block diagram of the GRNN-based channel estimation.

Consequently, GRNN outputs the entire channel state transition given by

Hout =


hout(1, 1) hout(1, 2) · · · hout(1, Nd)

hout(2, 1) hout(2, 2) · · · hout(2, Nd)
...

...
. . .

...

hout(Nc, 1) hout(Nc, 2) · · · hout(Nc, Nd)

 , (2.13)

where hout(m,n) (n = 1, 2, ..., Nd) is the estimated CSI by the trained neural network

at the n-th data symbol and the m-th subcarrier.

However, in a fast-fading environment, the channel state transition is rapid, even

in the beginning part of the symbol. This rapid transition can lead to inaccuracies

in the CSI estimated by only DFCE due to decision errors, even when DFCE is

performed at the beginning of the symbol. Therefore, it is difficult to achieve com-

prehensive performance improvements by focusing solely on the time domain, such

as the GRNN-based channel estimation method using DFCE in the time domain.

To fully enhance performance, considering other domains besides the time domain

becomes necessary.
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2.5 Proposal: CNN-Based Channel estimation method

using DFCE

We propose a new method to estimate the whole CSIs using CNN trained by

DFCE channel images. When frequency selectivity and significant time variation

of CSIs exist, incorrect CSIs are generated by DFCE, causing severe performance

degradation under a fast-fading environment. In particular, DFCE only considers

the time domain response and the selective fading in the frequency domain is not

considered. In addition, the time-frequency response of the CSIs can be considered

as a two-dimensional image. Therefore, We employ the two-dimension image feature

extraction and generalization capability of CNN to improve the low-quality chan-

nel estimation problem caused by DFCE. The flowchart of our channel estimation

method using the proposed CNN-based method is shown in Fig. 2.4. The estimator

composed of CNN is pre-trained offline and then utilized for online processing to

track the rapidly changing channel. Finally, the received estimated CSIs are utilized

to recover the received signal.

2.5.1 DFCE channel image

The complex-valued channel time-frequency domain response matrix Ĥ ∈ CNd×Nc

(the number of symbols is Nd and the number of subcarriers is Nc) between a trans-

mitter and a receiver can be represented as two two-dimensional images [19], which

are estimated by DFCE. One two-dimensional image represents the real part and

another one represents the imaginary part. Preprocessing the complex-valued chan-

nel is critical for CNN in the next section. Figure. 2.5 illustrates the real part of

two-dimensional time-frequency image for a sample estimated channel and an actual

channel (Nd = 20 symbols and Ns = 64 subcarriers). As seen in Fig. 2.5(a), although

in a high SNR environment, it is difficult to correctly estimate the actual channel
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Figure 2.4: CNN structure of the proposed method.

due to the frequency selectivity of the subcarrier and the fast time variation of the

channel.

2.5.2 Convolutional Neural Network

Convolutional neural network (CNN, or ConvNet) is a type of Artificial Neu-

ral Network (ANN) most frequently used in deep learning to evaluate visual im-

agery [20]. The proposed CNN consists of two parts: a feature extraction part

and a regression part. The structure of the CNN is shown in Fig. 2.6. The first

convolutional layer uses 64 kernels of size 5 × 5 in the filter and its output size

is 64×20×64; the second and third layer uses 32 kernels of size 3 × 3, followed by

ReLu activation. The fourth layer uses one kernel of size 3 × 3. The output sizes are

64×20×32, 64×20×32 and 64×20×3 in the second, third and fourth convolutional

layer. The final layer is the regression layer used to calculate errors and reconstruct

the images. Its output size is 64×20×2.
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(a) Estimated channel (b) Actual channel

Figure 2.5: Estimated channel vs actual channel corresponding to the real part in

frequency and time domain when SNR=30 dB, Doppler frequency

=2000 Hz.
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Specifically, the output of the (l+1)-th convolutional layer is defined as

y
(l+1)
u,c′,p′,q′ =

C∑
c=1

Kh∑
i=1

Kw∑
j=1

w
(l+1)
c′,c,i,j · x

(l)
u,c,p,q + b

(l+1)
c′ (2.14)

where c(c = 1, . . . , C) and c′ (c′ = 1, . . . , C ′) are the input and the output channel

indices, respectively. i(i = 1, . . . , Kh) and j(j = 1, . . . , Kw) represent the height

and the width of the kernel. u(u = 1, . . . , U) is the index of mini batch. x
(l)
u,c,p,q is

the output of the element (p, q) in the u-th mini batch of the c-th channel on the

l-th layer, w
(l+1)
c′,c,i,j indicate the weight at (i, j) position of the c-th channel and c′-th

channel kernel on the (l+1)-th layer, and b
(l+1)
c′ denotes the bias of c′-th channel on

the (l + 1)-th layer. y
(l+1)
u,c′,p′,q′ is the output of the element (p′, q′) in u-th mini batch

of c′-th channel on the (l + 1)-th layer. (p′, q′) are represented as

p′ = Ph − i+ p+ 1 (p′ = 1, . . . , P ′),

q′ = Pw − j + q + 1 (q′ = 1, . . . , Q′),
(2.15)

where Ph and Pw are the paddings of height and width. The above parameters of the

proposed CNN structure are shown in Table 2.1. The purpose of applying padding

is to ensure consistency in size.

Table 2.1: Parameters of CNN structure

l 1 2 3 4

C 2 64 32 32

Kh = Kh 5 5 3 3

Ph = Ph 2 2 1 1
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Figure 2.6: CNN structure of the proposed method.

After that, the output through the activation layer is expressed as

x(l+1)
u,c,p,q = max

(
0, y

(l+1)
u,c′,p′,q′

)
. (2.16)

It is the rectified linear unit (ReLU) used as an activation function. CNN feature

extraction is carried out by repeating (2.14) to (2.16) before the last convolutional

layer. The last convolutional layer does not perform (2.16). Finally, the loss function

of the regression layer is the half-mean-squared-error between the output of the last

convolutional layer and the two-dimensional desired response in the u-th mini batch

calculated as follows:

loss =
1

2

P ′·Q′·C′∑
e=1

(
y(l)u,e − du,e

)2
(2.17)

where the output tensor of the last convolutional layer yu,e and the desired response

tensor du,e are used to calculate each element (1 ≤ e ≤ P ′ · Q′ · C ′). In order

to minimise the loss function, these weights and biases are updated using a back-

propagation method [20].
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2.5.3 Regression CNN Based Channel Estimation

First, we train the CNN offline using the estimated channel Ĥ by DFCE and the

assumed actual channel under the only high Doppler shift environment (i.e. Doppler

frequency is 2000 Hz and the normalized value is 8×10−3) as the training input and

the desired response. By separating the real and imaginary parts of the CSIs, the

training data becomes two two-dimensional images. For example, we input the real

and imaginary part of one estimated CSI into the first layer (l = 0) of the CNN in

the u-th mini batch as (2.14),

x
(1)
u,1,m,n = Re

{
Ĥ(m,n)

}
(2.18)

x
(1)
u,2,m,n = Im

{
Ĥ(m,n)

}
(2.19)

One assumed actual CSI H is used to be the desired signal in the regression

layer as (2.17), and the assumed actual channels are acquired in advance from all

transmitted pilot symbols.

y
(l)
u,1,m,n = Re {H(m,n)} (2.20)

y
(l)
u,2,m,n = Im {H(m,n)} (2.21)

Therefore, the CSI estimated by CNN can be obtained in the next step.

Next, we estimate CSIs in the online stage. Figure. 2.7 illustrates the flowchart of

channel estimation using the proposed CNN-based method. The goal is to estimate

the channel state in the time-frequency domain using the transmitted pilots set at the

beginning of symbols. We exploit the pilot signal set at the beginning of symbols

to perform channel estimation at first. Then, the data-aided channel estimation

is performed by DFCE using pilot-aided CSIs. The estimated channel by DFCE

is input to the proposed CNN, which has been trained offline. In general, CNN

comprises numerous parallel filters connected via a set of weights to a local patch of

input data. In order to calculate the convolutional products, these filters traverse the
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Figure 2.7: The data flow of the proposed Regression CNN

data in two dimensions, namely vertically and horizontally. In contrast to previous

methods, the channel estimate errors caused by DFCE are mitigated by evaluating

the relationship in both the time and frequency domain using the CNN filters. In

other words, each weight w of the filters is shared in both the frequency and time

domains from (2.14). Finally, the estimated channel output by the CNN is used to

recover the received signal.

2.6 Computer Simulation

2.6.1 Simulation parameters

The simulation parameters are listed in Table 2.2. We use Convolutional codes (R =

1/2, K = 7) and the random interleaver for FEC in OFDM system with a band-

width of 20 MHz [21]. The OFDM symbol duration Ts including guard interval (GI)

is 4 µs (actual value) and its effective DFT symbol length Td is 3.2 µs, referred to

the basic Wi-Fi specifications. In addition, we consider the ideal case, i.e., no null
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Table 2.2: Simulation parameters

Transmission scheme OFDM

Bandwidth 20 MHz

FFT size, Number of carriers Nc=64

Guard interval 16

Number of pilot/data symbols Np = 1, Nd = 20

Channel model 15 path Rayleigh fading

Path interval 1

Max Doppler frequency 10, 1000, 2000 Hz

(fDTs = 4× 10−5, 3.2× 10−3, 8× 10−3)

Data modulation QPSK

Forward error correction Convolutional code (FEC)

(R = 1/2, K = 7)

subcarriers set (guard band). Null subcarriers will be considered in future work.

The cyclic prefix (CP) is employed as guard interval (GI) and its number is 16.

Moreover, the Jakes’fading model represents time-varying channel where there are

15 multipaths and the average path gain of each path is attenuated by 1 dB, as

shown in Fig. 2.8. Here, the multipath delay interval is 0.05 µs, which also means

sampling time. In order to represent various scenarios of the transceiver moving
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Figure 2.8: Channel model

environment, the maximum Doppler frequency is set to 10 Hz, 1000 Hz, and 2000

Hz, respectively. The normalized values fDTs = are 4× 10−5, 3.2× 10−3, 8× 10−3,

respectively.

2.6.2 Regression CNN Trainings

The images of the DFCE channel and actual channel used for the simulation

are 64× 20× 2 in size, including the real and imaginary parts. All the images

are generated using MATLAB R2021b. During the offline training phase, SNR is

determined as 30 dB, and the maximum Doppler frequency is set to only 2000 Hz.

We created a dataset of 10,000 received channels. The network is trained using the

mini batch gradient descent method, with each mini batch size of 128. The optimizer

uses the adaptive moment estimation (ADAM) algorithm. The initial learning rate

is set to 8 × 10−4, and the validation is implemented every 250 iterations. The

network is trained on an NVIDIA GeForce GTX 1660 SUPER GPU with MATLAB

Deep Learning Toolbox. The whole process of the simulation experiments is carried

out on Windows 10 with an AMD Ryzen 5 3500 6-Core Processor CPU.
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Figure 2.9: Mean square error for channel estimation.

2.6.3 Simulation Results

Figure. 2.9 compares the mean square error (MSE) for the DFCE only, the

conventional GRNN method [8, 9] and the proposed channel estimation methods

at a maximum Doppler frequency of 2000 Hz. MSE calculates the error using the

actual CSI and the estimated CSI. It can be seen that the proposed method has the
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best MSE for various SNR cases and the estimated CSI is the closest to the actual

CSI. This is because the estimated CSIs by DFCE are compensated by CNN in

the frequency and time directions in a lump sum, which can improve the estimation

accuracy. In other words, the proposed method considers not only the time variation

but also the relevance of the frequency selectivity. However, the GRNN method only

uses the one-dimensional DFCE data to compensate for CSIs in the time direction,

not considering the relevance of two-dimensional information.

Figure. 2.10 shows the BER performances of the conventional and proposed

methods at a maximum Doppler frequency of 2000 Hz. The theoretical BER is

calculated when the channel states for all data symbols are ideally known. Due

to the fast time-varying channel, decision errors often occur in the last part of

the packet, resulting in a significant deterioration of the BER performance of the

DFCE. Although the conventional GRNN method can achieve slightly higher BER

performance than DFCE-only, the error floor appears at around BER = 10−1 and

is almost as close to the DFCE-only case. The proposed method achieves the best

BER performance below 10−1 and is the closest to the ideal case. This is because

the proposed method has the lowest channel estimation error in the high Doppler

environment, as shown in Fig. 2.9.

In summary, the proposed method improves channel estimation accuracy by

CNN trained by two-dimensional DFCE data. Furthermore, although the offline

training set of the proposed network is trained at SNR=30 dB only, the input signal

in the low SNR case can also improve the performance due to partial noise reduction

in the DFCE method and the generalization of the CNN. Furthermore, when the

training sets consist of CSIs with high SNR, the CNN can extract complicated

channel characteristics at high Doppler frequency shifts with greater accuracy.

In order to better demonstrate the universality of the proposed method, fig-

ure.2.11 shows the results at the maximum Doppler shift of 1000 Hz and 10 Hz,
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Figure 2.10: BER performance compared to various conventional methods at max

Doppler frequency of 2000Hz.

respectively. In the case of maximum Doppler of 1000 Hz, only DFCE and conven-

tional GRNN have an error floor at 10−4. The proposed method moves the error

floor and achieves the reasonable BER performance below 10−5, which is the closest

to the actual channel. Furthermore, compared to conventional methods, there is a
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Figure 2.11: BER performance compared to various conventional methods at lower

Doppler frequency.

significant BER improvement in the environment with a small Doppler frequency

shift of 10 Hz, whether the system is in low or high SNR. This is because when

the Doppler frequency shift becomes lower, the channel image of DFCE has fewer

time-varying characteristics arising from Doppler shifts, and the CNN also provides
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highly accurate estimated CSIs based on these simpler characteristics.

Therefore, regression CNN greatly enhances channel tracking performances in a

high-mobility environment. As seen from the above result, the DFCE-aided CNN

method is extremely effective even in various high Doppler frequency shift scenarios

and outperforms the conventional methods.

Table 2.3: Time cost by various methods.

Processing time [ms] BER

GRNN 0.055858 3.5× 10−2

Proposal 0.008317 1.8× 10−3

We compare the GRNN and regression CNN methods by the CPU processing

time consumed for BER performance at SNR=30 dB and the maximum Doppler

frequency of 2000 Hz, as summarized in Table 2.3. As can be seen from the table, the

CNN is faster than the GRNN in terms of processing speed. This is because CNNs

perform offline learning beforehand, unlike the GRNN method. In the meantime, the

BER performance of the proposed method can be considerably improved; it could

be applicable for practical hardware implementation due to the feasible execution

time.

Although higher tracking performance can be achieved by using a two-dimensional

scattered pilot, the proposed method can achieve high tracking performance even

with only a pilot symbol set at the beginning of the packet by applying machine

learning. The proposed method can achieve high transmission efficiency since it

can reduce the overhead caused by the pilot structure. The proposed method can

also be applied under the scattered pilot arrangement, which would provide a fur-

ther equalization performance improvement. It should be investigated in our future
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work.

2.7 Conclusion

In this paper, a regression CNN-based channel estimation method utilizing the

image of the initially estimated channel has been proposed to compensate for rapidly

changing channels. The initially estimated channel consisting of a two-dimensional

time and frequency domain response is obtained by DFCE. The two-dimensional

extracted features using CNN can significantly improve the overall channel tracking

capability of the system by reducing the impact of errors in the DFCE arising from

the selective fading in the time and frequency domain. Thus, even at a maximum

Doppler frequency of 2000 Hz, the proposed method can outperform the previous

GRNN-based method in terms of BER performance. In addition, it is shown that the

BER performance can also be improved for different SNR and Doppler frequencies

without any estimator due to the generalization of the CNN, indicating that the

proposed method is universal in a variety of situations.
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Chapter 3

Data-aided weight with subcarrier

grouping for Adaptive Array

Interference Suppression

3.1 Introduction

With the advent of Internet-of-Things (IoT), mobile data traffic, as well as the

number of movable devices and connections, has been rapidly increasing in cellular

networks. Increasing transmission rates and realizing huge system capacity are es-

sential for the fifth generation of mobile communications (5G) and beyond [1],[2].

Therefore, millimeter wave (mmWave) is used as the ideal communication technol-

ogy to solve the above problems [3]. Millimeter wave communication systems exploit

the ultra-high frequency (EHF) band for broadband communications where there is

still a large amount of available spectrum for communications [4]. However, it suffers

from severe propagation loss, causing restricted coverage and a link budget shortfall.

The deployment of a massive MIMO-small cell system [5] is one of the promising

solutions to reduce the attenuation of radio waves. By setting the phase shifts of
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all the antenna elements to obtain beamforming gain, the signal-to-interference plus

noise ratio (SINR) can be can maximized in massive MIMO. Small cells can manage

high traffic demand within the coverage area of macrocells [6],[7]. In the small cells,

the propagation environment is dominated by a line of sight (LOS) component for a

reliable communication system. Therefore, Rician distribution with LOS and non-

LOS (NLOS) components is considered as the channel model in this situation [8].

In general, inter-user-interference (IUI) and additive white Gaussian noise are

essential for array antenna. Sample matrix inversion(SMI) [9],[10] is a well-known

method for interference suppression adaptive array antennas. SMI utilizes a covari-

ance matrix derived from the pilot symbols and the received signals of each antenna

element to calculate desirable weights. Due to the inaccurate channel state infor-

mation (CSI) caused by the additive noise effect, this method requires a sufficient

number of samples to adequately suppress interference [11]. In addition, since the

array weights are calculated for each subcarrier in orthogonal frequency division

multiplexing (OFDM) systems, it causes not only an insufficient number of sam-

ples but also a large amount of computation [12]. Further discussion is needed for

the OFDM frame. Common Correlation Matrix (CCM) based SMI algorithm has

been proposed to reduce the amount of calculation and enhance weight precision for

interference suppression performance. In the CCM method, an adequate number

of the time domain signal samples can be available for a well-converged covariance

matrix [13], [14]. However, it still has a problem of inaccurate channel estimation

and the limitation of working only in an almost frequency-flat fading environment

since the weight is common in all subcarriers. For this reason, it cannot work in

the heterogeneous deployment of small cells. A more recent work evaluates the

effect under the above situation [15]. Reference [15] proposed an adaptive sub-

carrier grouping (ASG) method. In ASG method, the standard deviations among

the adjacent subcarriers are calculated, averaged, and compared with the threshold
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to determine the grouping. It has good performance even in frequency selectivity

channels. However, because of an insufficient number of signal samples under the

limited number of pilot symbols, there is a problem of insufficient noise suppression

performance and the threshold of the grouping must depend on signal-to-noise ra-

tio (SNR). Although there are many methods to estimate SNR [16]-[18], they not

only cause the additional computational complexity but the SNR estimation errors,

which must be considered in the ASG method.

This paper proposes to introduce data-aided weight calculation with subcarrier

grouping. The proposed method calculates weights by the SMI method with sub-

carrier grouping and determines the decision result. The benefit of our proposal is

that we do not need to know the SNR or other information. This is because the

number of subcarriers in each group is the same. In general, more pilot symbols

have been used to improve the accuracy of weights. However, an increased number

of pilot symbols causes poor transmission efficiency since they do not contribute to

data transfer. Another key feature of our proposed method is to expand toward

the symbol direction by increasing the amount of sample aided by decision feedback

data, which can not only estimate more accurate weight estimation but also main-

tain transmission efficiency. Moreover, the LMS algorithm with low computational

complexity is introduced to ensure convergence while using the initial weights to

avoid additional iterations.

The rest of this paper is organized as follows. The system model is defined

and conventional schemes are introduced in Section 3.2. Section 3.3 describes the

proposed scheme. Computer simulation results are presented in Section 3.4. Finally,

Section 3.5 concludes this paper.
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3.2 System model

3.2.1 Channel model

In the Rician fading channel model, there are two components: a deterministic

component corresponding to LOS signals and a random component corresponding

to NLOS signals [20]. An NLOS multipath fading channel is expressed as,

h(τ)NLOS =
L∑
l=1

hlδ(t− τl), (3.1)

where δ denotes the Dirac’s delta function, τl is the time delay of the l-th path and

L is the total number of paths. hl indicates the complex channel coefficient, which

is represented as follows known as Jakes’ model [21],

hl =
gl√
J

J∑
j=1

exp (jϕj) , (3.2)

where gl denotes the gain of the path. J rays arrive at the receiver with an initial

phase ϕj. Here assumes the normalized path gain, i.e.
∑L

l=0 E [|h2
l |] = 1 where E [·]

stands for the ensemble average operation. The Rician fading channel is expressed

as,

h(τ) =

[
K

K + 1

] 1
2

hLOS(τ) +
hNLOS(τ)

(K + 1)
1
2

, (3.3)

hLOS(τ) = h0δ(t− τ1), (3.4)

h0 = g0 exp (jϕ0) , (3.5)

where hLOS(τ) represents the LOS fading channel and h0 is the complex channel

coefficient, respectively. Then the frequency response H(f) is obtained by Fourier

transform of the impulse response as,

H(f) =

NFFT−1∑
l=0

h(τl) exp

(
−j2πfτl

NFFT

)
, (3.6)
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where f and NFFT denote the frequency component and the number of fast Fourier

transform (FFT) points, respectively.

3.2.2 Uplink Array Antenna System Model

We suppose uplink transmission where a base station(BS) has Nr elements array

antenna and Nu user terminals (UEs) with OFDM like Fig.3.1.

-CP
… …

S/P

S/P

#N1

W

D
e
m

P
/S

Yc

#Nr

-CP

FFT

FFT

……
Xc ,Sc

User1

UserNu

BS

Figure 3.1: Block diagram of the basic system.

Throughout this paper, subscripts c and u represent the c-th subcarrier and the

u-th user, respectively. Then, the received pilot signal Xc ∈ CNr×Np , received data

signal Sc ∈ CNr×Nd , and array output Yc ∈ CNu×Nd can be expressed as follows.

Xc = AHcPc +N , (3.7)

Sc = AHcDc +Z, (3.8)

Yc = W H
c Sc, (3.9)

where

A = [a1, . . . ,au, . . . ,aNu ], (3.10)

Hc = diag (H1, . . . , Hu, . . . , HNu) , (3.11)

Pc = [pT
1 , . . . ,p

T
u , . . . ,p

T
Nu
]T, (3.12)

Dc = [dT
1 , . . . ,d

T
u , . . . ,d

T
Nu
]T. (3.13)
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A ∈ CNr×Nu , Hc ∈ CNu×Nu , Pc ∈ CNu×Np , Dc ∈ CNu×Nd , N ∈ CNr×Np , Z ∈ CNr×Nd

,Wc ∈ CNr×Nu denote array factor matrix, fading channel matrix, transmitted pilot

symbols, transmitted data symbol, additive white Gaussian noise (AWGN) matrices

of pilot symbols and data symbols, and weight vector, respectively. The array weight

vector can cancel interference components.

3.2.3 SMI Algorithm

SMI algorithm is based on a minimum mean square error (MMSE) method for

solving the minimum searching problem [9], whose weight can be derived as,

E[|e|2] = E[|Pc −W H
c Xc|2]. (3.14)

where the pilot symbol Pc is considered as the desired response.

The optimal weight by SMI algorithm is derived as

Φc = XcX
H
c , (3.15)

Vc = XcP
H
c , (3.16)

Wc = Φ−1
c Vc, (3.17)

where Φc ∈ CNr×Nr and Vc ∈ CNr×Nu indicate the covariance matrix and the esti-

mated CSI vector, respectively. However, there is a noise problem in the received

signal.

3.2.4 Adaptive Subcarrier Grouping (ASG)

In the above scheme, the effect of noise has been not fully considered when calcu-

lating the array weight. By exploiting adaptive grouped subcarriers with correlated

frequency responses for averaging, the convergence precision of the covariance ma-

trix can be improved [15]. Frist, subcarriers are chosen for grouping to suppress
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interference. We define m as both the number of stages and the end sequence of a

group to delimit a group range from the c-th subcarrier, i.e., the subcarrier sequence

corresponding to a group in the m-th stage is (c, ..., c+m). m = 0 is initialized as

no grouping.

We average the grouped received signal X and pilot signal P from subcarrier c to

c+m to reduce noise, which combines the (m+1) subcarriers. The grouped received

pilot signal matrix and the grouped transmitted pilot signal matrix for averaging is

calculated as follows,

X(m) =
1

m+ 1

m∑
k=0

Xc+k, (3.18)

P (m) =
1

m+ 1

m∑
k=0

Pc+k, (3.19)

where Xc+k ∈ CNr×Np and Pc+k ∈ CNu×Np are the (c + k)-th subcarrier of the

received pilot signal matrix and transmitted pilot signal matrix. X(m) ∈ CNr×Np and

P (m) ∈ CNu×Np are the averaged received pilot signal and averaged transmitted pilot

signal. Then, a standard deviation of the grouped received signal, σ
(m)
ASG ∈ CNr×Np

is calculated as,

σ
(m)
ASG =

√√√√ 1

m+ 1

m∑
k=0

{
Xc+k −X(m)

}2

, (3.20)

σ
(m)
ASG =

Np∑
j=1

Nr∑
i=1

σ
(m)
ASG,i,j/NpNr. (3.21)

σ
(m)
ASG represents the dispersion among the grouped subcarriers. Therefore, only

frequency-correlated subcarriers are combined by comparing with a threshold value,

σth
ASG, as follows.

if σ
(m)
ASG < σth

ASG, grouping operation proceeds to the next stage;

m← m+ 1. (3.22)
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Otherwise, if σ
(m)
ASG > σth

ASG, the grouping process is terminated, and the array weight

is calculated;

X̂c+k = X(m), (3.23)

P̂c+k = P (m), (3.24)

Φc+k
SG = X̂c+kX̂

H
c+k, (3.25)

V̂c+k = X̂c+kP̂
H
c+k, (3.26)

Ŵc+k = (Φc+k
SG )−1V̂c+k, (3.27)

where X̂c+k ∈ CNr×Np , P̂c+k ∈ CNu×Np ,Φc+k
ASG ∈ CNr×Nr , V̂c+k ∈ CNr×Nu , Ŵc+k ∈

CNr×Nu denote the averaged received signal for grouping, the pilot signal matrix

for grouping, the covariance matrix, CSI, and the proposed weight matrix at the

(c+ k)-th subcarrier (k = 0, . . . ,m), respectively. Therefore, the optimal group size

can be obtained. If σth
ASG is set to an appropriate value, the ability to mitigate noise

can be enhanced, contributing to better weight derivation.

3.3 Proposal: Subcarrier grouping with data-aided

weight

In the adaptive subcarrier grouping, since setting a threshold too large degrades

weight derivation accuracy due to an excess of data symbols having uncorrelated

frequency characteristics, setting the appropriate value of σth
ASG holds a prominent

factor. SNR is considered to be the main factor involved in setting the threshold.

Therefore, SNR estimation needs to be applied, such as some comparisons and novel

algorithms [16]-[17]. However, if these algorithms are applied, it will increase the

complexity of communication. [15] does not consider the computational problem and

estimation accuracy. In the proposed method, we not only reduce the noise effect by

increasing the number of data-aided samplings but also reduce the computational
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Figure 3.2: Initial weight W̌ calculation with subcarrier grouping.

complexity while ensuring transmission efficiency. At this time, we do not use the

additional pilot symbols. Our method is divided into two steps: 1. Deriving decision

result of array output by the SMI with subcarrier grouping, 2. Obtaining a more

accurate CSI vector aided by feedback decision data and estimating weight by LMS

scheme with subcarrier grouping.

3.3.1 Initial Weight Calculation

Initial weight is calculated by SMI weight, which uses subcarrier grouping. Dif-

ferent from ASG, the grouping is not established according to the threshold. Each

group is directly composed of the same number of subcarriers and the number of sub-

carriers is Ng. The initial weight W̌c+k (k = 0, . . . , Ng− 1) is calculated from (3.23)

to (3.27). The range of the group from the c−th subcarrier is directly delimited as

59



�

�

Figure 3.3: Proposed weight W̃ calculation with subcarrier grouping.

follows, without iteration,

m+ 1 = Ng. (3.28)

The array output for the c-th subcarrier is written by,

Yc = W̌ H
c Sc. (3.29)

Due to the noise effect, the initial array output contains errors. It is mapped into

the original QAM constellation points and the initial solution D̂c is obtained as

follows,

D̂c = F(Yc), (3.30)

where F(.) represents the decision function. In order to reduce the amount of

calculation, D̂c is only determined by the M(0 ≤ M ≤ Nd) symbols instead of

all. The concept of initial weight estimation for the SMI with subcarrier grouping
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is shown in Fig. 3.2. Each group corresponding to a different color contains Ng

subcarriers.

3.3.2 Data-aided Weight Calculation

In the data-aided weight calculation scheme, the subcarrier grouping is also used

and D̂c can be regarded as an additional pilot signal for weight calculation and

combined with the pilot signal as follows,

D̃c = [Pc, D̂c], (3.31)

where D̃c is desired response. The desired response in the subcarrier grouping can

be derived as,

D =
1

Ng

Ng−1∑
k=0

D̃c+k. (3.32)

where the number of subcarrier grouping for the desired responses is Ng, similar to

(3.19) and (3.28). Because of the inverse matrix operation, the repeated use of the

SMI method results in a significant increase in computation. Therefore, we use the

initial weight W̌c and the LMS method to replace SMI.

W̃c+k(1) = W̌c+k, (3.33)

W̃c+k(n+ 1) = W̃c+k(n)

+ βX̃c+k(D
H − X̃H

c+kW̃c+k(n)), (3.34)

where n and β denote the number of iterations and the step size that can control the

convergence characteristics of the LMS algorithm, respectively. W̃c+k(n) ∈ CNr×Nu

represents the weight at the (c+ k)-th subcarrier in the n-th step of the LMS algo-

rithm (k = 0, . . . , Ng−1). X̃c+k ∈ CNr×(Np+M) indicates the signal containing the Xc

and the first M data symbols of the Sc with grouping and averaging. Grouping and

averaging are performed as (3.23). In addition, since the initial state of the weight
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Algorithm 1 Proposed interference suppression scheme

1: W̌c+k ← (Φc+k
SG )−1V̂c+k

2: Yc ← W̌c
H
Sc

3: D̂c ← F(Yc)

4: D̃c = [Pc, D̂c]

5: D ← 1
Ng

∑Ng−1
k=0 D̃c+k

6: n← 1

7: W̃c+k(n)← W̌c+k

8: while n > L do

9: W̃c+k(n+ 1)←lms[W̃c+k(n),D]

10: n← n+ 1

11: end while

12: *lms[.] denotes the least mean square function

is calculated by the SMI algorithm, the number of iterations required for conver-

gence can be decreased. Consequently, the amount of computation is reduced. It is

worth noting that since the convergence rate of LMS without the initial weight is

slower than SMI[22][23], a large number of iterations must be performed to achieve

the same satisfactory convergence as SMI. In other words, LMS without the initial

weight is more computationally intensive than SMI in order to achieve the same

effect. That is why the LMS cannot be used in the initial weight calculation. By

repeating the above procedures, the weight error can be minimized. The concept

of data-aided weight derivation for the LMS with subcarrier grouping is shown in

Fig. 3.3. Algorithm 1 summarizes the detailed procedure (3.28)-(3.34).

62



�

Figure 3.4: Frame structure.

3.4 Computer Simulation

3.4.1 Simulation Parameters

We examine the interference suppression performance of the proposed algorithm

by a computer simulation. Detailed simulation parameters are listed in Table 3.1.

The receiver using Nr = 16 rectangular array antenna elements attempts to separate

out one desired signal from Nu = 4 incoming signals. We employ 16QAMmodulation

to every frame consisting of Np = 4 pilot and Nd = 30 data symbols, and each

frame is shown in Fig. 3.4. Moreover, each OFDM symbol is composed of Nc = 128

subcarriers. Rician fading with multipath is considered. The bandwidth of the

transmission signal is 1.25 MHz, and the OFDM symbol duration is Ts = 71.4 µs,

then the OFDM symbol rate is about 1/Ts = 14 kHz. These parameters are almost

compatible with a compact cellular system, i.e. LTE system [24].

3.4.2 Simulation Results

Figs. 3.5 and 3.6 show the BER performance comparison between the conven-

tional SMI, CCM-SMI, adaptive subcarrier grouping [15], and the proposed method.

The effect of the conventional and proposed methods is evaluated with different LOS
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Table 3.1: Simulation parameters

Parameters Values

Number of receiver antennas Nr 16

Number of signal sources Nu 4

Transmission scheme OFDM

Subcarrier spacing 15 kHz

Symbol duration Ts 71.4 µs

Modulation order 16QAM (w/o FEC)

Number of pilot symbols Np 4

Number of data symbols Nd 30

Number of subcarriers Nc 128

Number of FFT points NFFT 128

Angle of desired signal 0◦

Angles of interference signals 30◦, −70◦, 80◦

Channel model Rician fading

Rician K factor 10,-10 dB

Max Doppler frequency fd
10 Hz

(fdTs = 4.0×10−5)

components. Rician K factors, i.e. K = 10,−10 dB, present whether the LOS com-

ponent dominates the channel. When K = −10 dB, it approximates Rayleigh fading

with no dominant LOS path. In the adaptive subcarrier grouping method, the value
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of σASG according to the SNR and shown as follows,

σASG =

√
10−3/10

SNR
, (3.35)

To achieve convergence while reducing the computational complexity, we set M =

15, β = 0.6, L = 2, Ng = 4 in the proposed method.

The proposed method has better BER performance than other conventional

methods at arbitrary K factors. In a large K = 10 dB factor, the achievable gain is

around 1.5 dB compared to ASG, and 4 dB compared to MMSE-SMI at 10−4 BER.

Furthermore, in a smaller K = −10 dB situation, the proposed method also shows

the best BER performance, where the achievable gain is around 1 dB compared to

MMSE-SMI. However, although CCM-SMI can suppress the noise effect, the BER

performance seriously deteriorates and the error floor is observed before 10−4 or

10−2 because of frequency selectivity. Therefore, it can only be used in a single-path

situation. In addition, it is worth noting that ASG needs know the SNR situation

to determine the threshold σASG and make groups for noise rejection. In Figs. 3.5

and 3.6, the SNR estimation of ASG is assumed to be absolutely correct without

considering the accuracy. If the performance of the SNR estimation method dete-

riorates, ASG will become ineffective. In addition, the proposed method does not

depend on the SNR. It uses the same number of subcarrier groupings and decision

feedback to improve BER performance.

3.4.3 Computation Complexity

Since a large number of weight calculations require huge memory and hardware

resources, it is crucial to minimize the amount of computation with maintaining good

performance. The number of complex-valued multiplications is used to evaluate the

amount of computation.

Compared with the SMI algorithm, the computation complexity of our proposed

65



Figure 3.5: BER performance comparison (K = 10 dB).

scheme can be reduced by 20.4%. It is worth noting that although the decision

feedback causes an increase in the amount of computation, several subcarriers can

share one weight in the subcarrier grouping and the LMS algorithm is applied, which

reduces the amount of computation. The LMS algorithm reuses the weight from the

initial phase as well as replaces matrix inversion that dominates the computational

complexity.
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Figure 3.6: BER performance comparison (K = −10 dB).

3.5 Conclusion

This paper proposed the data-aided weight calculation and LMS method to im-

prove the interference suppression performance of subcarrier grouping-based SMI

adaptive array without SNR estimation method. It focuses on increasing data sam-

ples to reduce noise, thus maximizing the array weight derivation precision. Simula-

tion results showed that the proposed method attained improved BER performance

significantly with maintaining the transmission efficiency, whether LOS is the major

factor or not. In addition, it saves computation compared to the conventional calcu-
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Table 3.2: Computation complexity

Algorithms Values

(example values used in simulation)

SMI N2
r NpNc +NpNrNuNc +N3

r Nc +N2
r NuNc

per subcarrier (819,200)

Proposed (SMI + 2LNcNu(Np +M)Nr)
1
Ng

+NrMNcNu+

NcMNu log2(MNu)

(651,572)

lation of weight derivation for each subcarrier individually. Therefore, our proposed

method can be applied as a potential future interference suppression technique for

5G or beyond, where small cells are heterogeneously deployed on the macro cells.
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Chapter 4

Conclusion

OFDM systems continue to play an important role in 5G and the next gener-

ation 6G, due to their advantages of high spectrum utilization and resistance to

multipath interference. However, there are many problems with the practical ap-

plication of OFDM systems, such as the performance suffering greatly under high

Doppler shift conditions under high-speed mobile environments or under conditions

for interference in multi-user scenarios.

This paper mainly discusses two aspects of OFDM systems. On the one hand,

the fast fading caused by high-speed mobile environments leads to a decrease in

channel estimation accuracy, especially in the behind of the OFDM symbols. We

use the machine learning method to improve the channel accuracy to overcome this

problem. On the other hand, in multi-user scenarios, there is inter-user interference

(IUI) for the desired user. To solve this problem, we propose a data expansion

method to increase the number of samples and improve the accuracy of the weights

based on the SMI of the array antenna algorithm.

Chapter 2 investigates regression CNN based on channel estimation to estimate

CIS under a high-speed environment. Since the CSIs in the front of the packet are

not the same as the ones on the back in a high-speed environment, a highly reliable
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channel estimation method that can track time variations is needed. Conventional

methods have proposed channel estimation methods using GRNN. However, when

sharp channel fluctuations occur from the first half of the communication packet, the

one-dimensional training data using DFCE in the time domain of the conventional

method is erroneous. Furthermore, the channel estimation accuracy has become de-

graded. In fact, channel response has the time domain and the frequency domain, so

it can be considered as two-dimensional data like an image. Therefore, the proposed

method considers the relationship between the time and frequency domains and uses

a regression CNN, which can extract the characteristics of two-dimensional data, to

perform accurate channel estimation. In addition, by learning various channel data

in advance, the amount of iterative operations can be decreased. Simulation results

show that the BER characteristics can be significantly improved even in high-speed

moving environments.

In Chapter 3, a weight estimation method based on the beamforming of array

antennas has been proposed to overcome the IUI problem. The SMI method is

well known as a weight estimation method for array antennas to perform beam-

forming. However, this method has problems with low interference suppression

performance and high computational complexity since the weights are calculated

for each OFDM subcarrier. The conventional method has proposed to increase the

number of samples based on an adaptive grouping to improve the accuracy of the

weights. However, since this method requires estimation of SNR and the number

of samples is extended only in the frequency domain, the accuracy of the weights

is insufficient and the computational complexity is greatly increased. Therefore,

an algorithm that can improve the interference suppression performance with low

computational complexity needs to be considered. In the proposed method, we use

subcarrier grouping and decision feedback data to extend the number of samples

in frequency and time domains. In addition, the LMS method is used to reduce
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the computational complexity. The BER characteristics are improved with lower

computational complexity compared to the conventional methods.
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