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I Abstract

Although positron emission tomography (PET) serves as a powerful tool for in vivo
diagnosis, the impact of the noise on reconstructed images presents a substantial
challenge due to the fewer counts present in acquired data. Such noise potentially
degrades the accuracy of quantitative analysis and the detectability of lesions. Recently,
several deep learning-based post-processing and reconstruction have been developed to
reduce the noise in reconstructed images. However, deep learning may not provide
expected performance when a domain gap occurs between training and test data. To solve
the challenge, deep image prior (DIP) has attracted attention for denoising task. DIP is a
kind of unsupervised method that solves inverse problems by using the inductive bias of
the network structure as a regularization without prior training datasets. This thesis aims
at improving PET image quality using the DIP, which does not depend on the domain of
training data such as types of PET scanners and tracers. The first part of the thesis
introduces a PET image denoising method using a conditional DIP and proposes a novel
network architecture for 4D dynamic PET denoising. The second part of the thesis
proposes the iterative PET image reconstruction incorporating the conditional DIP in an
end-to-end manner. Then, the proposed reconstruction algorithm expands 2D PET data to
practical, fully 3D PET data. The main advantages of the proposed denoising method are
its fast computation time and easy implementation, which can potentially be helpful in
clinical situations. On the other hand, the proposed reconstruction method, which
performs optimization while measuring consistency with measured data, can reduce the

loss of detailed information such as small structures due to over-smoothing.
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I 1 Introduction

Positron emission tomography (PET) is a molecular imaging technique to visualize
and quantify the distribution of radioactive tracers labeled with positron-emitting
radioisotopes (RIs), such as ''C, >N, 130, and '®F, injected into living human bodies [1].
It enables the observation of various biochemical processes in vivo from blood flow,
glucose metabolism to neural receptor activity [2]. Thus, it is utilized not only in the
diagnosis of cancer [3,4], and neurodegenerative diseases such as Alzheimer's disease
[5,6], but also in fundamental neuroscience research, particularly in study of higher brain

functions [7].

While PET serves as a powerful tool for definitive in vivo diagnosis, the impact of
the noise on reconstructed images presents a substantial challenge relative to other
tomographic modalities, such as X-ray computed tomography (CT) [8]. This is
attributable to the fewer counts present in the acquired data. Such noise potentially
degrades the accuracy of quantitative analysis and the detectability of the lesions, which

may cause missed lesions [9-11].

A straightforward strategy for keeping PET image quality is to increase the amount
of radioactive tracer injected into the living human body. However, it is sometimes
difficult to apply this way due to the increased radiation exposure, which may potentially
increase lifetime cancer risk [12] and the limitations in high count-rate capabilities of PET
systems [13]. An alternative solution is to extend the PET scanning time; this could lead
to psychological discomfort for patients, and some may find it challenging to stay
motionless for extended periods during the PET examination [14]. Therefore, there is a

need for noise reduction strategies that neither increase the radiation exposure nor extend
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the scanning time. It would not be an overstatement to say that the evolution of PET

imaging has been a continuous struggle to overcome image noise.

From hardware perspective, improving the quality of PET images primarily involves
developing high-sensitivity PET scanners. This improvements can be achieved by using
radiation detectors of greater sensitivity [15,16] and optimization of scanner geometry to
detect larger solid angles [17-20]. Alongside hardware advancements, there are
significant efforts to improve PET image quality through advanced image denoising and
reconstruction techniques [21-23]. This thesis focuses on PET image denoising and
reconstruction techniques for improving PET image quality without PET instrumentation

modifications.

Techniques for improving PET image quality through denoising and reconstruction
have traditionally been realized by handcrafted filters or artificial prior information.
These have included algorithms such as the Gaussian filter, guided filter [24], nonlocal
means filter [25,26], block-matching filter [27] for post-denoising. For iterative
reconstruction, priors such as the Gibbs prior [28] and patients' anatomical information
[29,30] have been utilized. The advent of deep learning has revolutionized PET image
denoising and reconstruction by introducing data-driven approaches that learn optimal
denoising and reconstruction strategies directly from the huge datasets [31,32]. However,
to apply deep learning to medical imaging, including PET, it is necessary to overcome the
major hurdle of acquiring a large number of high-quality training datasets. In addition,
negative effects on PET image quality should be considered for PET imaging if there is a
domain gap between training and testing datasets resulting from different PET scanners

or other radioactive tracers.

The work presented in the thesis aims to improve PET image quality in the
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frameworks of the PET image denoising and reconstruction, using a deep image prior
(DIP) [33,34]. The DIP realizes an unsupervised deep learning method for solving inverse
problems such as denoising, which works a neural network structure as an intrinsic
regularizer and does not require the preparation of a prior training dataset. Therefore, it is
expected to solve the domain gap problem mentioned above. In this thesis, Chapter 2
describes the basic principles of the PET imaging and deep learning technology,
especially image reconstruction and the DIP. Chapter 3 presents about the PET image
denoising method using the conditional DIP and the application to dynamic PET imaging.
Chapter 4 discusses the 2D PET image reconstruction using the conditional DIP, and

Chapter 5 explores its extension to fully 3D PET data.



| 15

I 2 Basic principles

2.1 Positron emission tomography

2.1.1 Basics of positron emission
tomography
A distinctive advantage of PET over other tomographic scanners such as X-ray CT

and magnetic resonance imaging (MRI) is its superior molecular sensitivity, which

enables the precise quantification of biological functions in the living body [1].

Figure 2.1 shows a schematic illustration of the principle of the PET system. Within
the sequence of PET scans, the process begins with the generation of positron-emitting
RIs, typically synthesized in a cyclotron. After their production, these Rls are chemically
incorporated into radiopharmaceutical compounds, called PET tracers. These PET tracers
are then administered to the patient body, with the choice of PET tracers allowing for
targeted investigation of biological functions with specific organs, including blood flow,
metabolism, and receptor activity. Figure 2.2 shows the PET tracer '8F-fluoro-2-deoxy-
D-glucos ('®F-FDG), which is commonly utilized for cancer diagnosis as well as cardiac
and brain disorders [35-37]. Positrons emitted from the RI source interact with electrons
within the body, leading to annihilation events. Each annihilation produces a pair of 511
keV gamma rays, which are emitted in opposite direction. These gamma rays are
simultaneously detected by the radiation detectors of the PET scanner in what are called
coincidence events. The data from these coincidence events are then transferred to a

computer. Ultimately, PET images are computed through an image reconstruction process.
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2.1.2 Image reconstruction

In the early stages of PET image reconstruction, analytical reconstruction techniques,
notably filtered backprojection (FBP), were predominant [38-40]. Assuming that the two-
dimensional (2D) distribution of radioactive tracers within the body can be represented
by a continuous function X(u,v), the measurement data Y (r, ¢p), which is also known

as a sinogram, can be expressed by the following equation [41]:
Y(r,d)):f X(rcos¢p —ssing,rsing + scos ) ds. (2.1)

The sinogram represents a series of integrals computed along the s-axis of the image
X(u,v) that has been rotated by an angle ¢. This integral transformation process is
commonly referred to as the Radon transform [42]. The foundational concept of FBP lies
in the projection-slice theorem, which elucidates the direct relationship between the 2D
Fourier transform of the image X(u,v) and the 1D Fourier transform of the projection

data Y(r, ¢). FBP is calculated as the follows:

X(u,v) = f Yfiltered (7, d))l de,
0

r=ucos¢+vsing

Vycerear, #) = f G (&, §)|€] exp(2micr) dE, 2.2)

[ee]

G ) = J Y(r, ) exp(—2miér) dr,

where i and & represent the imaginary unit and variable of the frequency domain. |¢|
is the high pass filter, which is known as a ramp filter. The ramp filter is delivered
analytically, but its amplification of high-frequency components results in severe noise.
Thus, various frequency cutoff filters, such as the Shepp-Logan and hamming filters [43],
have been proposed to mitigate high-frequency noise, though this comes at the cost of

diminished spatial resolution. Analytical methods like the FBP are lauded for their rapid
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processing, linearity, and quantitative accuracy. Nonetheless, they are prone to noise
interference, resulting in streak artifacts in images under low-count situations, as

illustrated in Figure 2.3.

Developments in PET image reconstruction have led to the advent of iterative
reconstruction techniques, among which the maximum likelihood expectation
maximization (MLEM) algorithm [44-46] is a prominent example. The MLEM algorithm
integrates statistical and physical models directly into the image reconstruction process.
Specifically, the MLEM algorithm models the relationship between the image and

sinogram through Poisson distribution and a system of linear equations [47].

y = Poisson (Ax + b), (2.3)

T s .
where x = (xl, Xp, 0, x]) represents a vector of voxel values within the image, y =

(y1,¥2,+++,y;)T represents a vector of the projection data value, and vector b =

— — T
(bl, b, ---,b,) represents an expected background components, such as scatter and

random coincidence events, and A € R’/ denotes a system matrix, with individual
elements, a;;, which represents the probability that a pair of gamma rays originating from
the j-th voxel are detected along the i-th line-of-response (LOR). The Poisson negative
log-likelihood function of projection data y under image x, which is formulated as

follows,

L(ylx) = —logP(yl|x) =
I
C — Z {yl IOg (Z] ainj + El) - <Z] al'ij + El)} , (24)
i=1 j=1 Jj=1

where P(y|x) is the probability and C is a constant value. The MLEM algorithm

estimates an image by minimizing (2.4) using following iterative updates,
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(k)

X: 1 ai;:V;
Kt 1] z i (2.5)

J [ . PR/ (G
l=1al] 1—12j,=1al-jrxj, +bi

where k denotes the current number of iterations. The MLEM algorithm enhances PET
image quality over the FBP algorithm by incorporating the statistical noise model for PET,
as illustrated in Figure 2.3. Subsequent to the MLEM algorithm, block iterative
algorithms, such as the ordered subset expectation maximization (OSEM) [48], were
proposed as an accelerated algorithm, which divides the projection data into subsets and
iteratively updates the image with each subset [49,50]. The iterative algorithms can be
extended to 3D PET data and incorporated physical models by accurately modeling the
system matrix [51-54].

The point spread function (PSF) reconstruction methods were developed to integrate
the PSF into iterative reconstruction for dedicated and whole-body PET scanners [53].
For example, the PSF can be modeled in image space as follows,

n
xn+1 — X T AT y

T HTAT1 AHx"b’

(2.6)

where H represents a matrix of PSF kernel in the image space. The PSF reconstruction

can reduce statistical noise and enhance image contrast and spatial resolution.

The MLEM algorithm has an unfavorable characteristic in which noise and edge
artifacts tend to increase as the number of iterations increases [55]. Therefore, practical
solutions often involve terminating the iterations early or applying post-filtering with the
Gaussian filter to the reconstructed image. The maximum a posteriori (MAP)
reconstruction is an alternative solution, which integrates image priors such as the
smoothness of the image to achieve better noise and contrast characteristics than the

MLEM algorithm [56-59]. The posterior probability of the PET image x given emission
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data y can express through Bayes’ theorem as follows,

P(y|x)P(x)

PO (27)

P(x|y) =

where P(x) represents the prior probability of the PET image, called the Gibbs

distribution, as follows,

P(x) = %exp(—ﬁU(x)), (2.8)

where Z represents a partition function, and U represents an energy function. [ is a
hyperparameter to adjust the influence of the prior distribution. The negative log-posterior

likelihood can be defined as follows,

—log P (ylx) —log P(x) = L(yl|x) + BU(x). (2.9)

A typical energy function for the Gibbs distribution can be expressed as follows,
U =Y V(- x), (2.10)
j Jj'eNj
where V' represents a potential function. N; represents a set of neighboring voxels for

the j-th voxel. w;; isa weight between neighboring voxels. For example, the quadratic

prior is often used as the potential function as follows,

V(xj — x]-/) = (xj — xjr)z. (2.11)

The MAPEM algorithm using Green’s one-step-late method [58] estimates the image
by minimizing (2.9) using following iterative updates,

£

LD j Z’ ijYi (2.12)

. k 7’
i=1 2§,=1 aij/xj(, ) + bi

x=x®)
Figure 2.3 shows the reconstructed result of the use of the MAPEM with the quadratic

prior in low-count situations. The MAPEM algorithm provides a smoother PET image
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than the MLEM algorithm.
FBP MLEM, OSEM PSF recon. (EM+PSF)
S
©
©
2
o
©
©
£
(]
z
Ir_10|udmg Including physics MAPEM
noise model model

Low dose data

Including prior
information

Figure 2.3: Example of the FBP and some iterative PET image reconstruction algorithms, which were
applied to the same normal and low-dose simulation dataset. The figure is reprinted from the work of

Hashimoto et al. [22] (CC BY 4.0)
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2.2 Deep learning

Deep learning is a state-of-the-art subset of machine learning that operates through
artificial neural networks with multiple layers, mimicking the human brain's structure and
function [31,32]. In general, training deep learning models involves feeding them large
amounts of training datasets and adjusting trainable parameters using an optimization
algorithm such as stochastic gradient descent (SGD) [60]. This process minimizes a loss
function, gradually improving the model's accuracy. Deep learning has significantly
advanced fields such as computer vision [61] and natural language processing [62],
achieving remarkable results in image recognition and generation tasks that were once
challenging for traditional machine learning methods [63]. This thesis focuses on
convolutional neural network (CNN) architectures, which are widely used in image

processing tasks.

2.2.1 Convolutional neural networks

CNN is one of the specialized neural networks widely utilized in image processing
[64,65]. The most critical component of CNNs is a convolution layer, which performs
trainable convolution operations and then captures complex details in input data. These
convolution kernels are optimized through training, and they become finely tuned to
recognize various features from simple edges to complex shapes and textures. Another
important component of CNN is nonlinear activation functions, such as the rectified linear
unit (ReLU), which avoid the vanishing gradient problem in deep networks with many
layers to enhance the ability to capture nonlinear relationships between input and output

data. Following convolution layers, CNNs often use pooling layers that perform
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downsampling to reduce the spatial resolutions of the feature maps. The pooling layers
reduce the computational cost as well as control overfitting of the network. The CNN
architectures are composed of combinations of these components, and deeper networks

can generally learn more complex relationships.

Figure 2.4 shows the schematic illustration of the U-Net architecture [66,67], a CNN
structure commonly used in image-to-image translation tasks for medical imaging [68],
such as segmentation [69,70], denoising and image reconstruction [21,71,72]. The U-Net
architecture consists of encoding and decoding paths. The encoder path typically
increases the number of feature maps while downsampling the spatial size of the feature
maps, and the decoder path conversely reduces the feature maps while upsampling the
spatial size of the feature maps. Crucially, it integrates skip connections that directly
concatenate or add feature maps from the encoder to the decoder at the same spatial

resolutions, thereby preserving fine-grained details for accurate image-to-image

16 16
D
o> |¢|¢
5 3 f

Il@—@*lll

=) Conv + BN + LReLU

' . . =) Conv_stride2 + BN + LRelLU
=) Deconv + Upsampling

-b> Copy and add
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1 16 16

256 x 256 x 64

|
“ ]
_
e
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64 x 64 x 16

32x32x8

Figure 2.4: Schematic illustration of the U-net architecture. The number of feature maps is denoted at
the top of each box. The pixel size is indicated on the left side of each box. The arrows denote the

different operations. The figure is reprinted from the work of Hashimoto et al. [79] (CC BY 4.0)
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2.2.2 Deep 1mage prior

The DIP framework [33,34] is an innovative approach to image processing in which
the structure of CNNss acts as intrinsic prior knowledge or regularizers, without preparing
any training datasets. The DIP can solve various inverse problem tasks such as denoising,
super-resolution, and inpainting. The training process of the DIP starts with the initialized
network f with trainable parameters 6, taking random noise z as input and degraded
image X, as target, and then iteratively optimizes the network parameters as follows.

0* = arg;nin E(x0; f(612)),

x* = f(6%|2), (2.13)
where E(-) is a loss function, such as the mean squared error (MSE). This optimization
intuitively converges to the original degraded image xo. However, the optimization
approaches an undegraded image due to the inductive bias of the CNN structure. Thus,
the DIP shows the potential to produce high-quality image restorations without preparing
huge training datasets. This has great potential in situations where it is difficult to prepare
large amounts of datasets, and expands the range of practical applications of deep learning

in the medical imaging field.



Basic principles | 25

2.2.3 Deep learning for PET 1imaging

The landscape of PET image reconstruction is currently experiencing a profound
transformation, driven by integrating state-of-the-art deep learning algorithms alongside
advances in computer vision [21,22]. Figure 2.5 delineates a classification of deep
learning approaches for PET imaging, organized into three principal categories. (1) The
first category is deep learning methods for PET image denoising. (2) The second category
includes direct PET image reconstruction methods which are data-driven methods to learn
a direct mapping from measured data to reconstructed images using huge training datasets
of sinograms and corresponding PET images. (3) The third category is an iterative
reconstruction which is a hybrid approach that uses iterative image reconstruction

frameworks integrated with neural networks.
(1) Post processing (denoising) method [23]

The post processing (denoising) task is an inverse problem that restores a clean
image from a noisy image that is mixed with image noise complicated by the
reconstruction. The post processing using deep learning learns the nonlinear
relationship between the clean PET images x and the noisy images X as described

in the following optimization problem,

6* = argmin E(f(0]X),x), (2.14)
)

The goal of the post processing methods using deep learning is to obtain the
nonlinear mappings from low-dose to high-dose PET images in a data-driven manner.
Compared to traditional post processing methods, the deep learning approaches
demonstrate better denoising performance while maintaining spatial resolution and

quantitative performance.
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(2) Direct image reconstruction method [73,74]

The direct PET image reconstruction using deep learning learns direct mappings
from the measured data y to the reconstructed PET images x through neural

networks f in a data-driven manner, as follows,

0" = argéninE(f(Hly),x), (2.15)

The direct PET image reconstruction is distinct from other methods because it
aims to explore a way to reconstruct PET images using only training datasets, without

relying on any physical models such as a forward or back-projection operations.
(3) Iterative reconstruction method [21,22]

The iterative PET image reconstruction using deep learning is a hybrid
framework that integrates existing iterative reconstructions such as the MLEM and
MAPEM algorithms, which is based on a statistical and physical models, with deep
learning. The iterative reconstruction using deep learning can be categorized into two
main ways: a synthetic-based reconstruction using an equality constraint and an

analysis-based reconstruction using image priors R, as follows,

n;izn L(y|x) s.t. x=f(0]z), (2.16)
or
% = argmin(L(y|x) + BR(x)) (2.17)

The iterative PET image reconstruction using deep learning can improve PET
image quality through neural networks as constraints or image priors while measuring

the consistency between the measured data and the reconstructed image.
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(1) Post processing (denoising) method (2) Direct reconstruction method (3) lterative reconstruction method

OB o 'ER O

Figure 2.5: Classification of deep learning approaches for PET imaging in three categories; post-

=\
) v A )

processing (denoising), direct reconstruction, and iterative reconstruction methods integrated with

neural networks (NNs). The figure is reprinted from the work of Hashimoto et al. [22] (CC BY 4.0)
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3 Conditional DIP for reconstructed PET

images

3.1 Introduction

The DIP framework can address inverse problems, such as denoising, without the
requirement for prior training datasets. This capability has the potential to address the
fundamental challenges in the field of PET imaging, where the acquisition of large, tracer-

and scanner-specific clinical datasets is often prohibitive.

In this chapter, we introduce a conditional DIP framework for PET image denoising.
Furthermore, we expand the conditional DIP to 4D dynamic PET imaging and evaluate
the denoising performance of PET imaging using computer simulation and real preclinical

data scanned by an animal PET scanner, SHR-38000, Hamamatsu Photonics K.K.
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3.2 Methods

3.2.1 Conditional deep 1image prior

In the image synthesis task of no-flash/flash images [75] using the DIP framework,
as demonstrated by Ulyanov et al. [33,34], high-quality images can be generated using
flash images as the network input instead of random noise. This suggests that utilizing
prior information, such as the same patients’ X-ray CT or MR images, related to the noisy
PET image as neural network input, may potentially enhance PET image quality in the
denoising task of the DIP. The PET image denoising task for a conditional DIP framework

using prior information g is represented as follows [76-78],

0* = argénin E(xo; f(019)),

x* = f(6"]g), (3.1)
where f is a neural network with trainable parameters 6, xq is noisy PET image, and
E(-) is a loss function. In general, PET scans are often followed by X-ray CT or MRI
scans using PET/CT and PET/MRI scanners to collect anatomical information for
diagnostic purposes and attenuation correction. Therefore, these CT and MR images can
be used as prior information g. However, it is often difficult to install additional CT or
MRI mechanisms into brain-dedicated PET and animal PET scanners due to design

constraints, which may not acquire anatomical information.

In this chapter, we propose a conditional DIP framework that operates without such
additional anatomical information for dynamic PET imaging [79,80]. In dynamic PET
imaging, noisy and short-duration PET images are reconstructed in a time series to track
the kinetics of PET tracers within the body. Therefore, the proposed method uses a static

PET image, reconstructed by integrating emission data from dynamic PET data frames as
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prior information, instead of anatomical information. Then, the conditional DIP

framework denoises the dynamic PET images.

Figure 3.1 illustrates a example of the proposed conditional DIP framework for
dynamic PET images. In this procedure, static PET images are input to the network, and
followed by calculating the loss between the network output and the target dynamic PET
images. Finally, the trainable parameters 6 of the network are updated to denoise the

dynamic PET images. The above process is repeated until the optimization is completed.

— Static PET data — r Dynamic PET data

£ 3 (6ol9)

) Loss
Sk |
L — S
Static image: g Dynamic image: x,'
Update
f(6:19) Loss
Update
f(6219) Loss
3rd output image
Update

Figure 3.1: Procedure of the proposed conditional DIP framework for dynamic PET imaging. The
arrows denote the different operations. The figure is reprinted from the work of Hashimoto et al. [79]

(CC BY 4.0)
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Figure 3.2 shows a simple example of the original DIP and conditional DIP
frameworks for dynamic PET imaging. The experimental condition of this example was
the same as in3.3.1. The original DIP framework when random noise is utilized as the
network input, obtained blurred images without keeping the edge information, such as
cortex structures. In contrast, the conditional DIP framework when static image is utilized
as the network input, not only obtained a comparable level of image smoothness but also
kept edge details. This demonstration supports the effectiveness of the conditional DIP

framework for dynamic PET imaging.

Original DIP Conditional DIP
with random noise input  with static PET image input

Ground truth OSEM

Figure 3.2: Example of the original DIP and conditional DIP frameworks. The arrows denote the
different operations. The figure is reprinted with a modification from the work of Hashimoto et al.

[79] (CC BY 4.0)

Figure 3.3 illustrates optimization trajectories of the conditional DIP framework for
dynamic PET imaging. In the PET imaging system, dynamic PET images suffer from
various artifacts due to scatter, attenuation, statistical noise, and other reconstruction

errors, which degrade the reconstructed images, as illustrated in the gray manifold region.
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Traditional optimization-based denoising methods without any prior information
typically diverge significantly from the ground truth image, as represented by the blue
trajectory. In contrast, the trajectory of the original DIP denoising tends to conform more
closely to the ground truth image due to the inductive bias of the CNN structure', with
early stopping of the optimization process yielding enhanced PET image quality, as
indicated by the green trajectory. Using the static PET image as prior information provides
an advantage whereby the initial point of the optimization is positioned nearer to the
ground truth point compared to random noise input. Consequently, the optimization using
the static PET image input is expected to improve PET image quality compared to the

original DIP with random input, as shown by the red trajectory.

! Inductive biases in CNNs encompass local connectivity, shared weights, and spatial
hierarchies. These biases enable CNNs to efficiently discern patterns rather than noise in
images.
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Figure 3.3: Schematic illustration of the optimization trajectories of the conditional DIP framework
for dynamic PET imaging. The gray region shows a manifold of degraded noisy dynamic PET images
from the ground truth image. The trajectories of traditional optimization-based denoising, original and
conditional DIP methods are shown in blue, green, and red lines, respectively. The arrows denote the

different operations. The figure is reprinted from the work of Hashimoto et al. [80] (© 2021 IPEM)
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3.2.2 Network structures and optimization

In this study, we employed two network structures: the 3D U-Net architecture [79]
illustrated in Figure 2.4, and 4D branch CNN architecture [80] for dynamic PET image

denoising.

The encoding path of the 3D U-Net architecture consists of sequential application of
two sets of 3 X 3 X 3 convolution layers in three dimensions. Each convolution layer is
followed by batch normalization (BN) [81] and a Leaky Rectified Linear Unit (LReLU).
Then, a downsampling operation is executed by a 3 x 3 x 3 convolution layer with a stride
of two, followed by application of the BN and LReLU. Concomitantly, with each
downsampling operation, the feature channel is augmented doubled. The decoder path is
constructed with a 3 x 3 x 3 deconvolution layer and two 3 % 3 % 3 convolution layers,
followed by the BN and LReLU. In addition, feature maps from the encoder path are
linked to the corresponding decoder path via skip connections. Finally, the output layer is

activated by a linear function.

The 4D branch CNN architecture comprises two components: a feature extractor and
multiple reconstruction branch modules. The feature extractor module is designed to
share common spatial and temporal features from 4D dynamic PET images. Subsequently,
each reconstruction branch module employs these common features output from the
feature extractor module, to reconstruct each dynamic frame independently. The feature
extractor module employs the same structure as the 3D U-Net in Figure 2.4. The
reconstruction branch module is composed of a sequence of three 3 x 3 x 3 convolution
layers, with each followed by the LReL U, and one 3 % 3 x 3 convolution layer through a

sigmoid activation for output operations.
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The 3D U-Net architecture independently performs the conditional DIP optimization
for each frame by Equation (3.1). The 4D branch CNN architecture performs conditional

DIP optimization for all dynamic frames in an end-to-end manner as follows,

T
0 = argmin » wiE ((x0)i; f(0r.,|9)).
o =
x* = f(6%9). (3.2)
where x, represents the 4D dynamic PET images at i-th time frame (i = 1,2, ..., T). 6
and Oy represent trainable parameters of the feature extractor and reconstruction branch

modules.

A sequence pf dynamic PET images exhibits significant variation in amplitude across
individual frames, resulting in disparate magnitudes of the loss function for each time
frame. Inspired by the weighted heterogeneous learning method proposed by Fukui et al.
[82], we introduce loss weights w, aimed at equalizing the loss contributions from each
frame to mitigate this discrepancy and improve stability during network training, as

follows,

1
_ mklnﬁzyzl Eyj

Wi = 1 N
NZM Ey;

) (3.3)

In Equation (3.3), the denominator represents the mean value of the training loss E
across epochs up to N for each time frame k , while the numerator corresponds to the
minimum value of the mean training loss. This framework serves to normalize the loss
function relative to the loss magnitude at each time frame. In this study, the loss weights

are pre-calculated over N = 50 epochs.

In this study, we used the MSE for the loss function. The SGD with a momentum of
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0.9 and a learning rate of 0.01 were employed for the optimization. The trainable
parameters of the networks were initialized using He initialization [83]. The experiments
were conducted on a computer using the Ubuntu 16.04 with an NVIDIA Quadro RTX

8000 graphics processing unit (GPU) with 48 GB of memory. The network models were

implemented using Keras (www.keras.io) with TensorFlow (www.tensorflow.org) as the

backend.


http://www.keras.io/
http://www.tensorflow.org/
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3.3 Experimental setup

This subsection describes the details of experimental setup of the computer
simulation and real preclinical data to evaluate the performance of conditional DIP

denoising for dynamic PET imaging.

3.3.1 Computer simulation

The experimental setup for the computer simulation was implemented with
references to [79,80]. This study used a digital 3D brain phantom from the Brainweb
database [84,85]. In this computer simulation, the time activity curves (TACs) of the
glucose metabolism of '®F-FDG in gray matter, white matter, and tumor were generated
by Feng’s method [86], based on a two-tissue compartment model [87]. Table 3.1 shows
the kinetic parameters, K1, k2, k3 and k4, and Figure 3.4 shows a plasma input function
and regional TACs. The dynamic PET scan consisted of 30-time frames of 4 x 20 s, 4 x
40 s,4 x 60 s, 4 x 180 s, and 14 x 300 s over 90 minutes, started just after the bolus
injection of the PET tracer. The regional TACs were averaged in each time frame, and
then the sinograms of the dynamic PET scan were calculated using a simple forward
projection method. The sinogram and PET image sizes were 192 angles x 192 bins x 64
slices and 192 x 192 x 64 voxels with 1.0 x 1.0 X 2.0 mm/voxel. Poisson noise was added
with approximately 10° coincidence events over 90 minutes, as listed in Table 3.2. In
order to evaluate the simplified performance of the conditional DIP denoising, an ideal
PET scanner without any attenuation and scatter was assumed. The image reconstruction
was performed using the OSEM algorithm with six iterations and 16 subsets. We

calculated parametric images using the Patlak plot graphical analysis [88] by Pmod 3.802
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(PMOD Technologies Ltd, Zurich, Switzerland) [89]. The influx rate K; was calculated
from voxel-wise TACs, which corresponds the transfer rate of the irreversible tracer from
blood vessels to brain tissue, as follows.

Kik
Kiz 13.
k, + k3

(3.4)

The start time of the linear phase after equilibration t* was set to 20 minutes.

The mean squared bias and variance were computed as indicators of quantitative

accuracy and noise property, as follows,

Bias?

_ ZjeR(xj - (xGT)j)Z

(3.5)
ZjeR((xGT)j)z

Yjer(¥) — f)z
ZjER((xGT)j)Z

Variance = (3.6)

where x and xgr represent target and grand truth images, and R represents the target
ROIs. In addition, the following indicators of the peak signal-to-noise ratio (PSNR) and

structural similarity (SSIM) [90] were used for quantitative evaluation.

max(x
PSNR = 20log;o | — (*cr) , (3.7)
2
JN—RZjeR(xj - (xGT)j)
SSIM — i (z'ujx’uijT + Cl)(zo—jxxGT + Cz) (3.8)

Ne JerR (Hhe + Wegr + €1)(0f + Oy +€2)

where Ujy, Ujx., and Ojx, Ojx., represent the mean values and standard deviations in
the square region on the j-th voxel of x and xgr, respectively. 0jyy., represents the

covariance between x and xgr. These indices are calculated within whole brain regions
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R. ¢; and c, were defined as (0.01L)? and (0.03L)? with the dynamic range of the

grand truth L.

Table 3.1: The kinetic parameters used in this computer simulation.

Regions K1 k2 k3 k4
White matter 0.046 0.080 0.052 0.001
Gray matter 0.071 0.086 0.055 0.001
Tumor 20.082 0.055 0.085 0.001
100 A —— Gray matter
White matter
—— Tumor
80 —— Plasma input function
_ |
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Figure 3.5: The regional time activity curves and plasma input function in the computer simulation.
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Table 3.2: Coincidence events of each time frame in the experiments.

Computer simulation  Real preclinical data
Time frame Time duration BF-FDG BE-FDG 1C-raclopride
1 20 1.13E+05 2.24E+05 5.76E+05
2 20 4.85E+05 1.31E+06 3.50E+06
3 20 7.76E+05 2.11E+06 4.27E+06
4 20 9.71E+05 2.33E+06 4.40E+06
5 40 2.37E+06 5.10E+06 8.90E+06
6 40 2.84E+06 5.45E+06 8.97E+06
7 40 3.25E+06 5.71E+06 8.94E+06
8 40 3.62E+06 5.89E+06 8.79E+06
9 60 6.04E+06 9.06E+06 1.28E+07
10 60 6.68E+06 9.23E+06 1.22E+07
11 60 7.22E+06 9.37E+06 1.17E+07
12 60 7.70E+06 9.45E+06 1.11E+07
13 180 2.53E+07 2.87E+07 3.01E+07
14 180 2.78E+07 2.89E+07 2.57E+07
15 180 2.95E+07 2.89E+07 2.20E+07
16 180 3.08E+07 2.87E+07 1.88E+07
17 300 5.36E+07 4.73E+07 2.55E+07
18 300 5.57E+07 4.62E+07 1.97E+07
19 300 5.75E+07 4.50E+07 1.53E+07
20 300 5.90E+07 4.37E+07 1.19E+07
21 300 6.01E+07 4.22E+07 9.26E+06
22 300 6.11E+07 4.06E+07 7.26E+06
23 300 6.18E+07 3.91E+07 5.71E+06
24 300 6.22E+07 3.74E+07 4.50E+06
25 300 6.25E+07 3.57E+07 3.56E+06
26 300 6.26E+07 3.42E+07 2.83E+06
27 300 6.24E+07 3.27E+07 2.25E+06
28 300 6.22E+07 3.13E+07 1.80E+06
29 300 6.18E+07 3.00E+07 1.44E+06
30 300 6.12E+07 2.86E+07 1.15E+06
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3.3.2 Real preclinical PET data

The real preclinical experiments were approved by the Animal Ethical Committee of
the Central Research Laboratory, Hamamatsu Photonics K.K. (Approval number: HPK-

2017-02).

The dynamic '8F-FDG and ''C-raclopride [91] PET scans of a conscious rhesus
monkey brain were performed using an animal-dedicated PET scanner (SHR-38000,
Hamamatsu Photonics K.K.) [92]. The axial and transaxial fields of view (FOV) of the
PET scanner are 330 mm and 108 mm, respectively, and the spatial resolution at the center
position is 2.3 mm. The head of rhesus monkey was fixed to a monkey chair using a head
restraint on the monkey's skull. The head of monkey was set in the PET gantry in parallel

with the orbitomeatal plane.

Initially, a 30-minute transmission scan was conducted with a **Ge-3Ga rod source,
followed by a dynamic emission scan that spanned 90 minutes and was divided into 30
distinct time frames: 4 X 20s, 4 x 40 s, 4 x 60 s, 4 x 180 s, and 14 x 300 s. The
administered doses for 'F-FDG and ''C-raclopride were 194.7 MBq and 291.7 MBgq,
respectively. The arterial plasma input function for the '*F-FDG PET scan was derived
by calculating the ratio of the unmetabolized fraction to the total plasma activity. The
image reconstruction was performed using a 3D dynamic row-action maximum-
likelihood algorithm (DRAMA) algorithm [93] with two iterations and 60 subsets. The
sinogram and PET image sizes were 360 angles % 360 bins x 103 slices with span of three
and a ring difference of 19, and 256 x 256 x 103 voxels with 0.65 x 0.65 x 1.0167
mm/voxel. The PET images were cropped to 192 x 192 x 64 voxels because of the GPU

memory limitation. The detailed time frame and coincidence events in the experiments
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are listed in Table 3.2.

For the '®F-FDG data, the influx rate K; was calculated using the Pmod software.
The putamen and background white matter ROIs were manually set on the co-registered
MR images, and mean putamen uptakes and background standard deviations were

calculated for quantitative analyses.

For the "C-raclopride data, the non-displaceable binding potential BPyp images
were generated using the Logan plot graphical analysis [94] using the Pmod software,
which calculate binding to dopamine D»/Dj receptors as follows,

ks

As areference region, we used the cerebellar cortex region instead of an arterial blood
input data. The start time of the linear phase after equilibration t* was set to 20 minutes,
and the efflux rate across the brain blood barrier k, was set to 0.15. The putamen and

background white matter ROIs were manually set on the co-registered MR images.
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3.3.3 Comparison algorithms

In the experiments, we compared the conditional DIP using 3D U-Net and 4D branch

CNN architectures with following algorithms.

® Gaussian filtering: The Gaussian filtering is often used for post-denoising as a
baseline method of the PET imaging. The 3D Gaussian filtering is calculated as

follows,

exp (‘ (i2_0£)2>

x.
i—k)2\"’
jEwiZkea)i exp <_( 20-2) >

(xgr)i = (3.10)

where x is the noisy image. ¢ and w represent the standard deviation of the

Gaussian distribution and window.

® Guided filtering [24,95]: The guided filtering is widely used as a fast edge-preserving
filter, which applies for edge-aware denoising as well as the image synthesis task of
no-flash/flash image denoising. We applied 3D guided filtering which perform a
linear transformation from a guidance image to the denoised output image. The 3D

guided filtering is calculated as follows,

(xGuided)i = Z Wyuided (I)xj , (3.11)
j
1 (I — w) (I — )
(Wguided)ij(l) = W Z <1 + 0_2 T e ’ (3-12)
kewikewj k

where I is the guidance image. u and o2 represent a mean and variance of the
guidance image. |w| is number of voxels in the window w. & represents a

regularization parameter which penalizes a linear coefficient. In the
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experiments, we used the same static PET image as the input of the conditional

DIP as the guidance image for fair comparison.
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3.4 Results

3.4.1 Computer simulation

Figure 3.6 shows the loss curves for each time frame in the 4D branch CNN
architecture. The differences in the loss curves increased, leading to unstable learning
curves for the network when the loss weights were not applied for network training.
Conversely, the differences in the loss curves decreased, and the learning curves of the

network became stable when the loss weights were used for network training.

Figure 3.7 displays the transaxial and sagittal slices of the time frame 6, covering
120-160 s, time frame 26, covering 3900—4200 s, and the Patlak influx constant images,
calculated by different denoising algorithms in the computer simulation. The qualitative
assessment demonstrated that the resolution of the conditional DIP processed by the 4D
branch CNN architecture is notably enhanced in both the early phase of time frame 6 and

the Patlak influx constant images compared to other denoising algorithms.

Figure 3.8 illustrates tradeoffs between the mean squared bias and variance for the
tumor ROIs in the time frame 26 which is 65-70 min post-injection, as well as for the
Patlak influx constant images. The tradeoff curves demonstrated that the conditional DIP
processed by the 4D branch CNN architecture reduced bias and variance compared to

different denoising algorithms.

Figure 3.9 shows the PSNR and SSIM across different denoising algorithms in the
Patlak influx constant images. The PSNRs and SSIMs for both conditional DIP processed
by the 3D U-Net and 4D branch CNN architectures surpass those achieved with the 3D
Gaussian filtering and guided filtering. These results showed that the conditional DIP

processed by the 4D branch CNN architecture outperforms other denoising algorithms in
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terms of performance of noise suppression and quantitativeness.
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Figure 3.6: Influence of the loss weights application on the loss. (a) The learning curves without
applying the loss weights, and (b) with applying the loss weights. The loss weights reduced the
variance in the loss curves, thereby contributing to the stabilization of network training. The figure is

reprinted from the work of Hashimoto et al. [80] (© 2021 IPEM)
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Figure 3.7: Simulation results of (a) the dynamic PET image at the time frame 6, (b) time frame 26,
and (c) Patlak influx constant image. The columns correspond to the ground truth, reconstructed
images obtained by the OSEM algorithm, Gaussian filtering, guided filtering, and conditional DIP
with the 3D U-Net and 4D branch CNN architectures (left to right). The figure is reprinted from the
work of Hashimoto et al. [80] (© 2021 IPEM)
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Figure 3.8: Tradeoffs between the mean squared bias and variance for the simulation data at the tumor
ROIs in (a) the time frame 26 and (b) Patlak influx constant image. The markers corresponding to 2.0,
2.5,3.0, 3.5, and 4.0 mm FWHM for the Gaussian filtering, 0.1, 0.5, 0.75, 1.0 and 1.5 ¢ for the guided
filtering, 20 000, 15 000, 10 000, 5000 and 500 epochs for the conditional DIP with 3D U-Net
architecture, and 20 000, 10 000, 5000, 2500 and 1000 epochs for the conditional DIP with 4D branch
CNN architecture. The images in Figure 3.7 are labeled by filled markers. The figure is reprinted from
the work of Hashimoto et al. [80] (© 2021 IPEM)
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Figure 3.9: PSNRs and SSIMs for the simulation data.
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3.4.2 Real preclinical PET data

Figure 3.10 displays the transaxial and sagittal slices of the time frame 6, covering
120-160 s, time frame 26, covering 3900—4200 s, and the Patlak influx constant images,
calculated by different denoising algorithms in the real preclinical dynamic '*F-FDG data.
When the guided filtering was applied, which uses the same static PET image information
for the guidance image as the conditional DIP, it resulted in the loss of structure details
such as cortex region. Conversely, both the conditional DIP processed by the 3D U-Net
and 4D branch CNN architectures successfully preserved the detailed structures. Notably,
the proposed conditional DIP denoising with the 4D branch CNN managed to reduce

statistical noise while preserving fine details.

Figure 3.11 illustrates tradeoffs between the average putamen uptake and the
background standard deviation for the time frame 26, which is 6570 min post-injection,
as well as for the Patlak influx constant images. The conditional DIP denoising with the
4D branch CNN architecture demonstrated superior performance, exhibiting higher
putamen uptake values and lower background standard deviation compared to different

denoising algorithms.

Figure 3.12 displays the transaxial and sagittal slices of the time frame 6, covering
120-160 s, time frame 26, covering 3900—4200 s, and non-displaceable binding potential
BPyp images, calculated by different denoising algorithms in the real preclinical dynamic

"C-raclopride data.

Figure 3.13 shows the mean BPyp values at the putamen ROI. Through both visual
assessment and quantitative analysis, the conditional DIP with the 4D branch CNN

architecture is observed to enhance the resolution of dynamic PET images in the time



Conditional DIP for reconstructed PET images | 52

frame 26 and to yield a higher BPyp in the non-displaceable binding potential images

compared to different denoising algorithms.

Figure 3.14 illustrates the regional TACs for the putamen and cerebellar cortex
regions treated by different denoising algorithms. The TACs denoised by the proposed
conditional DIP with the 4D branch CNN architecture exhibit a smoother profile
compared to those denoised by other algorithms. These findings indicate that the proposed
conditional DIP with 4D branch CNN architecture is versatile and practical for PET
tracers that exhibit not only a widespread distribution such as '®F-FDG but also

concentrated accumulation in brain regions such as !'C-raclopride.
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Figure 3.10: Preclinical results of (a) the dynamic PET images at time frame 6, (b) the time frame 26,
and (c) the Patlak influx constant images in '*F-FDG. The columns correspond to the images processed
by 3D DRAMA, Gaussian filtering, guided filtering, and conditional DIP with 3D U-Net and 4D
branch CNN architectures (left to right). The figure is reprinted from the work of Hashimoto et al. [80]
(© 2021 IPEM)
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Figure 3.11: Tradeoffs between the putamen uptake and background standard deviation for preclinical
BF-FDG data in (a) the time frame 26, and (b) Patlak influx constant images. The markers
corresponding to 1.0, 2.0, 3.0, 4.0 and 5.0 mm FWHM for the Gaussian filtering, 0.1, 0.5, 0.75, 1.0
and 1.5 ¢ for the guided filtering, 1250, 1000, 750, 500 and 250 epochs for the conditional DIP with
3D U-Net architecture, and 7000, 5000, 4000, 3000 and 2000 epochs for the conditional DIP with 4D
branch CNN architecture (upper right to lower left). The images in Figure 3.10 are labeled by filled
markers. The figure is reprinted from the work of Hashimoto et al. [80] (© 2021 IPEM)
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Figure 3.12: Preclinical results of (a) the dynamic PET images at the time frame 6, (b) time frame 26,
and (c) non-displaceable binding potential images in ''C-raclopride. The columns correspond to the
images processed by the 3D DRAMA, Gaussian filtering, guided filtering, and conditional DIP with
3D U-Net and 4D branch CNN architectures (left to right). The figure is reprinted from the work of
Hashimoto et al. [80] (© 2021 IPEM)
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Figure 3.13: Mean BPnp values at the putamen ROI in the "'C-raclopride experiment.
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Figure 3.14: Regional TACs at (a) the putamen and (b) cerebellar cortex ROIs. The figure is reprinted

from the work of Hashimoto et al. [80] (© 2021 IPEM)
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3.5 Discussion

Various supervised and self-supervised deep learning algorithms for PET image
denoising have been developed [96-102]. For example, Gong et al. [96] proposed the
supervised PET image denoising using the perceptual loss based on a pre-trained VGG
network to enhance PET image quality [103]. Ote et al. [97] investigated the impact of
four different network architectures on the supervised low-dose PET image denoising.
However, the quantitative accuracy of the denoised PET images cannot be assured for
unknown cases not covered in the training datasets, such as unfamiliar diseases, new PET
tracers, and different human races. Furthermore, these methods require the preparation of
extensive datasets. Our proposed conditional DIP framework can address these concerns
as it is an unsupervised deep learning algorithm that relies solely on the subject's own

data.

For the results of the computer simulation, the tradeoffs between the mean squared
bias and variance for the tumor ROIs demonstrated that the proposed conditional DIP
with the 4D branch CNN architecture can preserve the quantitative accuracy within the
tumor region while minimizing image noise. This trend is particularly noticeable in earlier
time frames, such as the time frame 6, compared to the guided filtering and conditional
DIP with 3D U-Net architecture methods, which utilize the same static PET image
information as the proposed conditional DIP denoising with the 4D branch CNN
architecture. These are also evident in the quantitative results of the real preclinical PET

data.

The enhanced performance of the proposed conditional DIP denoising with the 4D

branch CNN architecture is attributed to its end-to-end framework, which includes the
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feature extractor that facilitates the sharing of common information across different time
frames. Common information extracted by the feature extractor are transferred to each
reconstruction branch for reconstructing detailed information of each dynamic PET frame

to improve the dynamic PET image denoising performance.

Previous research on conditional DIP for PET image denoising by Cui et al. [76] and
Hashimoto et al. [79], has indicated that the conditional DIP outperforms other denoising
algorithms such as the guided nonlocal means filtering [ 104], block-matching 4D filtering
[105], and deep decoder denoising [106]. Given these findings, it seems reasonable that
the proposed conditional DIP denoising with the 4D branch CNN architecture would have

competitive or better results compared to these denoising algorithms.

In this chapter, we utilized the static PET image as the network input. The conditional
DIP denoising is also available to use the X-ray CT or MRI images to enhance PET image

denoising performance, in line with findings from previous research [76,78,107].

In the experiments of the real preclinical PET data, we used the '*F-FDG, which
showed no significant changes in the distribution of radioactivity between the early and
later time frames, as well as a reversible-type PET tracer, !'C-raclopride, that exhibits
dynamic shifts in Rls, particularly in the striatum. The real preclinical data results
indicated that the conditional DIP denoising with the 4D branch CNN architecture
delivers greater resolution in the time frame 26 and a higher BPyp values in the non-
displaceable binding potential images compared to other denoising algorithms. The
regional TAC for the putamen with the Gaussian filtering was relatively lower than that
obtained with the conditional DIP denoising. Moreover, the regional TACs generated by
the conditional DIP denoising with the 4D branch CNN architecture were smoother than

those produced by other denoising algorithms. It is important to note that the regional
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TAC:s of the cerebellar cortex were not underrepresented due to the comparatively large
ROI. The results suggest that the conditional DIP denoising is capable of being effectively
utilized for both nonreversible accumulate radioactive tracers, such as '3F-FDG, and
reversible radioactive tracers, such as ''C-raclopride, with reduced bias. Consequently,
we believe that the conditional DIP denoising framework is applicable to a wide array of

PET tracers.

In small animal studies, an excessive dose of radioactive tracers might lead to an
increased receptor occupancy by non-radioactive tracers in neuroreceptor imaging. The
conditional DIP denoising framework has the potential to lower both the radiation dose

and the dose of non-radioactive PET tracers, offering a solution to the issue of overdosage.

The original research by Ulyanov et al. [33,34] indicated that the performance of the
DIP framework for tasks such as image denoising and inpainting was significantly
influenced by the network structures. This is because the network structure has an
intrinsic inductive bias. Our future work will focus on exploring an optimal network

architecture that provides more robust regularization for PET image denoising.

A notable limitation of this study is the impact of involuntary patient movements
during dynamic PET scanning. This real preclinical experiment can ignore the effect of
movements because the monkey subjects were securely immobilized. However, for actual
situation for human study, involuntary movements may result in blurred PET images due
to positional errors across dynamic frames. According to the report by Zhao et al. [108],
the conditional DIP tolerates certain degrees of misalignment between prior information
and the target images. As an alternative, we can solve to use motion correction techniques
[109-111] to mitigate above concern. Future research will explore the influence of patient

movement on the image quality.
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Our evaluation was confined to simulated and real preclinical brain PET data. To
fully assess the effectiveness of the conditional DIP denoising framework, further
evaluations incorporating other organs, human, and different radioactive tracer datasets

are essential.
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4 DIPrecon: PET image reconstruction

using conditional DIP

4.1 Introduction

As explained in Chapter 3, the conditional DIP denoising framework has the potential
to improve the image quality of PET images. The conditional DIP denoising is a post-
processing method, which is characterized by fast calculations and is easy to implement
in existing PET scanners. However, there is a risk of accidentally removing important

image information, such as lesions, along with image noise.

In this chapter, we introduce an iterative PET image reconstruction incorporating the
conditional DIP framework, called DIPrecon [112,113]. The DIPrecon incorporates the
conditional DIP framework into image reconstruction to achieve powerful noise reduction
while measuring consistency with measured emission data, fundamentally solving the
above-mentioned challenges of post-processing. The advantage of the proposed
reconstruction algorithm is that the end-to-end DIPrecon is formulated as a single
optimization problem by incorporating the forward projection model into the loss
function of the conditional DIP framework and can reduce the number of hyperparameters
compared to a hybrid DIPrecon algorithm. We evaluate the proposed algorithm with
conventional iterative reconstruction algorithms using Monte Carlo simulation data and

real preclinical data.
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4.2 Methods
4.2.1 Proposed end-to-end DIPrecon

algorithm

For the proposed end-to-end reconstruction algorithm, the reconstructed PET image

x is obtained using the conditional DIP denoising framework as follows,

x = f(6l9), (4.1)

where f is a neural network with trainable parameters 8 which are the representation

of the reconstructed PET image x. g represents prior information as the network input.

The PET image can be calculated by minimizing the constrained optimization
problem using Equation (2.3) as follows,

min E (Ax, yg)
s.t. x=f(0lg),

(4.2)
where E is the loss function such as the MSE or Poisson negative log likelihood function.
A is a system matrix that denotes the probability of each voxel to each LOR, and y, is

the measured projection data. In this study, we substitute the above constraint into the

objective function to compute reconstructed process in one step as follows,

6" = al‘géninll(Af(ng) —Yo) Om|l, (4.3)

x* = f(6"]g), (4.4)
where (O represents the Hadamard product, and m is the binary mask of the detector
gaps. The detector gaps are typically filled by an interpolation process in the sinogram
space. In this study, inspired by the inpainting task of the DIP framework, the loss function

was computed using only measured data. In addition, we used the MR images as the prior
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information of the network input.
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4.2.2 Implementation

Figure 4.1 illustrates an implementation overview of the proposed end-to-end
DIPrecon algorithm. For this experiment, we utilized the same 3D U-Net architecture that
was presented in Figure 2.4, with the only modification being the output convolution layer.
The output layer consisted of a 1 x 1 X 1 convolution layer with the ReLU activation
function. We used a rotation-based method to implement the forward projection [114].
The proposed end-to-end DIPrecon algorithm performs the following steps. (1) The prior
information of the MR image is input into the network. (2) The PET image is obtained
from the network output. (3) The forward projection is calculated to obtain the estimated
sinogram. (4) The loss is calculated with the measured sinogram and estimated sinogram.

(5) The network parameters are updated through the back-propagation algorithm.

The limited-memory Broyden—Fletcher—Goldfarb—Shanno (L-BFGS) algorithm
[115], a quasi-Newton method which uses an approximation of the inverse Hessian matrix
(second-order gradient) of the loss function, was utilized in this implementation. The L-
BFGS algorithm is known for its stable convergence and quicker performance compared
to first-order gradient descent algorithms. Prior research on PET image reconstruction
and denoising using the conditional DIP [76,78,112] have demonstrated that the L-BFGS
algorithm offers improved computational time and convergence stability when compared
to other first-order gradient descent methods, including the SGD, Nesterov’s accelerated

gradient [116], and Adam [117].

We used the learning rate of 0.1. The experiments were conducted on a computer
using the Ubuntu 18.04 with an NVIDIA Quadro RTX 8000 GPU with 48 GB of memory.

The network models were implemented using PyTorch 1.7.1 (https://pytorch.org/).



https://pytorch.org/
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4.3 Experimental setup

4.3.1 Computer simulation

We utilized 20 brain phantoms from the BrainWeb database [84,85] and generated
projection data through Monte Carlo simulation. The radioactivity contrast ratios for gray
matter, white matter, and cerebrospinal fluid were set to 1:0.25:0.05, reflecting the typical
distribution of the '®F-FDG. The attenuation coefficients were assigned to 0.00958 mm'!

for soft tissue and 0.0151 mm! for bone, respectively.

For the experiments, we assumed a brain-dedicated PET scanner [111] as follows: It
featured a detector ring with a diameter of 486.83 mm, composed of 28 detector units
circumferentially and four units in the axial direction. Each detector unit housed a 16 x
16 array of cerium-doped lutetium—yttrium oxyorthosilicate (LYSO) crystals, with each
crystal measuring 3.14 x 3.14 x 20 mm. The list-mode data of the 3D PET acquisition
were converted into a 2D PET sinogram format using a single-slice rebinning method,
with a maximum ring difference set to = 15. The scatter events were excluded from the
list-mode data to simplify the simulation. The sinogram and PET image sizes were 128
angles x 128 bins x 64 slices, and 128 x 128 x 64 voxels with 3.0 x 3.0 x 3.221 mm/voxel.
The simulated sinogram had approximately 35.9 + 1.59 million counts for each subject.
Before the reconstruction, both component-based normalization and attenuation

correction were performed on the sinogram space.

In this experiment, PSNR and SSIM were used for quantitative evaluation, as shown
in Equations (3.7) and (3.8). Additionally, we computed the contrast recovery coefficient

(CRC) and the background standard deviation (STD) as follows,
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CRC = (% - 1) / <§—Z - 1), (4.5)

11 .
STD = K—bZ(bk—b) , (4.6)

where a = %Zf“zl a, and b represent the mean uptakes of the gray matter and white
a

matter (background) over K, and K, ROIs. g and Egt represent the ground truth
uptakes of the gray matter and background regions. We used 30 ROIs for gray matter and

background, containing only 80% pixels of the gray matter were selected.
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4.3.2 Real preclinical PET data

The real preclinical experiments were approved by the Animal Ethical Committee of
the Central Research Laboratory, Hamamatsu Photonics K.K. (Approval number: HPK-

2017-02).

We used the same real preclinical '®F-FDG PET data as in subsection 3.3.2. The
scatter correction was implemented through a convolution subtraction method, and
attenuation correction was executed by reprojecting the transmission image into 3D

sinogram space.

The acquired 3D PET emission data were converted into the 2D sinogram format
utilizing the Fourier rebinning method. The sinogram and PET image sizes were 256
angles x 256 bins x 64 slices, and 256 x 256 x 64 voxels with 0.65 x 0.65 x 1.0167
mm/voxel. A T1-weighted MR image was scanned on a different day and was manually

registered to PET image by two radiological technologists.
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4.3.3 Comparison algorithms

In the experiments, we compared the proposed end-to-end DIPrecon with the FBP
using the Hanning filter, and MLEM with 100 iterations. These were then performed the
Gaussian post-filtering of o = 1 voxel. Furthermore, we performed the hybrid DIPrecon

algorithm by Gong et al. [112] for comparison.

The hybrid DIPrecon algorithm defines the following constrained optimization
problem,

max L(y|x)
s.t. x = f(0]g)

(4.7)
where L is the Poisson log likelihood function. In the hybrid DIPrecon algorithm,
Equation (4.7) is transformed into an unconstrained problem using the augmented

Lagrangian format, and solved it by the alternating direction method of multipliers

algorithm [118] in three steps as follows,

X" = argmax L(y1%) — 5 1x = £(O"|g) + w711, (48)
X

6"+ = argminl| (6lg) — (x"** + w2, (49)

= 4 X - f(67 g), (4.10)

where p is ascaled dual variable and p is a positive constant. We used the same settings

employed in the original paper by Gong et al. [112].
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4.4 Results

4.4.1 Computer simulation

Figure 4.2 displays the three orthogonal slices of the reconstructed images and their
magnified images by different reconstruction algorithms in the computer simulation. The
proposed end-to-end DIPrecon algorithm using random noise input and MRI input
obtained accurate PET images with preserving brain structures compared to both the FBP
and MLEM algorithms. Notably, the proposed end-to-end DIPrecon algorithm with the
MRI input generated more fine cortex structures than the other reconstruction algorithms.
In addition, the proposed end-to-end DIPrecon algorithm provided finer edges compared

to the hybrid DIPrecon algorithm.

Figure 4.3 illustrates the box plots of the PSNR and SSIM for the various
reconstruction algorithms. The mean PSNR values for the FBP, MLEM, hybrid DIPrecon,
and the proposed end-to-end DIPrecon with random noise and MRI input were 14.16,
14.18, 16.31, 15.40, and 16.31 dB, respectively, and the mean SSIM values were 0.588,
0.611, 0.786, 0.685, and 0.761, respectively. The PSNRs and SSIMs of the proposed end-
to-end DIPrecon algorithm with MRI input were much higher than the FBP and MLEM
algorithms. Note that the proposed end-to-end DIP recon algorithm also proved

comparable to the hybrid DIPrecon algorithm.

Figure 4.4 illustrates the tradeoffs between the CRC and STD for the gray matter
region by different reconstruction algorithms. The tradeoff curves demonstrated that the
proposed end-to-end DIPrecon algorithm achieves the highest CRC and the hybrid
DIPrecon algorithm provides better noise performance in STD. These quantitative results

indicated that the proposed end-to-end DIPrecon algorithm provides better or compatible
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performance compared with the FBP, MLEM, and hybrid DIPrecon algorithms.

. . End-to-end DIPrecon End-to-end
MR image Ground truth FBP MLEM Hybrid DIPrecon W/ noise DIPrecon w/ MR!

Subject 2

i o D

End-to-end DIPrecon End-to-end

MR image Ground truth FBP MLEM Hybrid DIPrecon W noise DIPrecon w/ MRI

Subject 16

& & &

&9 &2 &2

&% & _ &P
] e

Figure 4.2: Three orthogonal slices of the reconstructed images and their magnified images of the red

squared regions by different reconstruction algorithms in the computer simulation. The columns
correspond to the MR images, ground truth, reconstructed images obtained using FBP, and MLEM,
hybrid DIPrecon, and the proposed end-to-end DIPrecon with random noise and MRI input (left-to-
right). The figure is reprinted from the work of Hashimoto et al. [113] (© 2022 IEEE)
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Figure 4.3: Quantitative results of the PSNR (top) and SSIM (bottom) for the computer simulation
with different reconstruction algorithms: the MLEM, hybrid DIPrecon (Hybrid), end-to-end DIPrecon
with random noise input (End-to-end w/ noise) and with MRI input (End-to-end w/ MRI). The line
within the box represents the median value, and the upper and lower lines of the box represent the 75th
and the 25th percentiles, respectively. The upper and lower whiskers represent the maximum and
minimum values, respectively. The figure is reprinted from the work of Hashimoto et al. [113] (O

2022 IEEE)
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Figure 4.4: Tradeoffs between the CRC and STD at the gray matter region for the computer simulation
with different reconstruction algorithms: the MLEM, hybrid DIPrecon (Hybrid), end-to-end DIPrecon
with random noise input (End-to-end w/ noise) and with MRI input (End-to-end w/ MRI). Markers
are plotted every ten iterations from ten to 100 in the MLEM, every iteration from one to ten in the
hybrid DIPrecon, every three epochs from 18 to 45 in the end-to-end DIPrecon with the random noise
input, and every epoch from 33 to 42 in the end-to-end DIPrecon with the MRI input. The
reconstructed images in Figure 4.2 are labeled by filled makers. The figure is reprinted from the work

of Hashimoto et al. [113] (© 2022 IEEE)
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4.4.2 Real preclinical PET data

Figure 4.5 displays the three orthogonal slices of the reconstructed images and their
magnified images by different reconstruction algorithms in the real preclinical '*F-FDG
PET data of the conscious rhesus monkey brain. The proposed end-to-end DIPrecon
algorithm provides high-quality PET images compared with both the FBP and MLEM

algorithms.

Figure 4.6 illustrates the tradeoffs between the striatum uptake and STD by different
reconstruction algorithms. The proposed end-to-end DIPrecon algorithm showed both the

highest striatum uptake and lowest STD in the other reconstruction algorithms.

MR image FBP MLEM Hybrid DIPrecon End-to-end DIPrecon w/ MRI

49 @

48 ©
49 @

Figure 4.5: Three orthogonal slices of the reconstructed images by different reconstruction algorithms
in the computer simulation. The columns correspond to the MR images, reconstructed images obtained
using FBP, MLEM, hybrid DIPrecon, and the end-to-end DIPrecon with MRI input (left-to-right). The
figure is reprinted from the work of Hashimoto et al. [113] (© 2022 IEEE)



DIPrecon: PET image reconstruction using conditional DIP | 75

x1073

—A— MLEM
8.0 —A— Hybrid
—6—End-to-end w/ MRI

Striatum uptake (a.u.)
. N ~ ~ N
IS wn o q ©

N
w
!

0.15 0.20 0.25 0.30 0.35 0.40 0.45
STD

Figure 4.6: Tradeoffs between the striatum uptake and STD for real preclinical data with different
reconstruction algorithms: the MLEM, hybrid DIPrecon (Hybrid), and end-to-end DIPrecon with MRI
input (End-to-end w/ MRI). Markers are plotted every ten iterations from ten to 100 in MLEM, every
iteration from one to ten in the hybrid DIPrecon, every three epochs from 9 to 18, and every epoch
from 21 to 30 in the end-to-end DIPrecon with MRI input. The corresponding reconstructed images
in Figure 4.5 are labeled by filled markers. The figure is reprinted from the work of Hashimoto et al.

[113] (© 2022 IEEE)



DIPrecon: PET image reconstruction using conditional DIP | 76

4.5 Discussion

Similar to PET image denoising, various supervised deep learning algorithms have
been developed for iterative PET image reconstruction [119-122]. For example, Gong et
al. proposed a deep learning-based iterative PET image reconstruction algorithm
incorporating a supervised CNN for image representation [119]. Xie et al. expanded the
network in the above-mentioned work to generative adversarial networks [120].
Mehranian and Reader proposed MAP reconstruction to integrate residual networks by
using a forward-backward splitting algorithm [121]. However, as mentioned in Chapter
3, there are still challenges in applying supervised deep learning reconstruction to
unknown cases not covered in the training datasets, such as unfamiliar diseases, novel
PET tracers, and different human races. The DIPrecon algorithms have the potential to
open the doors to apply clinical use without any prior training datasets due to the synergy

of the conditional DIP and iterative image reconstruction frameworks.

Our proposed end-to-end DIPrecon algorithm distinguishes itself from other deep
learning-based PET reconstruction algorithms. Typically, supervised deep learning
reconstruction requires a substantial number of reconstructed PET images for network
training. In contrast, the DIPrecon requires only the measured data, attenuation correction
information and additional prior information such as MR images. This can reduce the
inductive biases in training datasets, such as artifacts introduced during the existing image

reconstruction process.

The computation time for the proposed end-to-end DIPrecon and hybrid DIPrecon
algorithms were 5.74 seconds and 226.76 seconds per iteration, which demonstrated that

the proposed end-to-end DIPrecon approximately 8.8 times faster than the hybrid
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DIPrecon in obtaining well-converged reconstructed images. The hybrid DIPrecon
algorithm requires three calculation steps as described in (4.8) to (4.10): solving two
subproblems iteratively and updating the Lagrangian multipliers. On the other hand, the
proposed end-to-end DIPrecon algorithm transforms the constrained optimization
problem described in (4.2) into the unconstrained optimization problem described in (4.3),
and solves it without any penalty parameters in a single step using the neural network
optimization. Thus, the proposed end-to-end DIPrecon is a more practical and faster
algorithm for iterative PET image reconstruction without any complicated penalty
parameter adjustments, unlike the hybrid DIP recon algorithm, which requires parameter

tuning for the ADMM algorithm.

The proposed end-to-end DIPrecon algorithm has a drawback with respect to learning
stability. An unstable behavior was observed during initial iterations because the proposed
DIPrecon algorithm optimized from randomly initialized network parameters. To mitigate
this behavior, we can use pre-trained network, the same as the implementation of the

hybrid DIPrecon algorithm.

The limitation of this study is that the experiments were only on the simulated brain
PET data with "®F-FDG contrast and real preclinical brain PET data from a conscious
rhesus monkey with '®F-FDG. In the future, we plan to evaluate human clinical data,
different PET scanners, PET tracers and other organs. The effects of the proposed
DIPrecon algorithm in low-dose PET imaging should also be investigated in the future.
In addition, we will investigate the impact of the proposed end-to-end DIPrecon algorithm
on mismatched data between PET and MRI, such as lesions present on the MR images

and not on the PET images.

In the experiments, we prepared 2D sinograms using the single-slice rebinning
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method for the computer simulation and the Fourier rebinning method for the real
preclinical data. However, most recent PET scanners do not use these methods because
they inherently lack information on the measurement data, resulting in blurred images. In
order to utilize all the information in the measurement data, it is necessary to handle fully
3D PET data. Therefore, we will introduce a practical algorithm for expanding the end-

to-end DIPrecon to fully 3D PET data in the next chapter.
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I S5 Expanding DIPrecon to 3D PET

5.1 Introduction

In the Chapter 4, we introduced the iterative PET image reconstruction algorithm
incorporating the conditional DIP framework, called the end-to-end DIPrecon. Although
the end-to-end DIPrecon provided accurate PET images while measuring consistency

with measured emission data, it was limited to 2D sinograms.

The lack of GPU memory is the primary factor that restricts the expanding the end-
to-end DIPrecon to fully 3D PET implementation. In this chapter, to address the challenge,
we introduce the first attempt to implement an end-to-end DIPrecon algorithm for fully
3D PET data [123]. We modify the end-to-end DIPrecon algorithm to a block iteration
and sequential learning of an ordered sequence of block sinograms. In addition, we
implement the relative difference penalty (RDP) function [124] to the loss function of the
network to further improve the quantitative accuracy of the reconstructed image. We
evaluate the proposed 3D end-to-end DIPrecon algorithm with conventional iterative

reconstruction algorithms using Monte Carlo simulation data and real preclinical data.
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5.2 Methods

5.2.1 Block iterative algorithm for fully
3D PET data

The end-to-end DIPrecon can reconstruct PET images by minimizing the constrained
optimization problem shown in (4.2). For 2D PET data, (4.2) can solved by the
unconstrained problem shown in (4.3) in one step. However, for the fully 3D PET data,
the optimization in (4.3) cannot be computed on current GPU processors due to its huge
data volume: the data includes the 3D projection data, network parameters, and network
input such as MRI data, as well as calculation histories of the 3D forward projection for
keeping gradients to optimize the network parameters through the back-propagation
algorithm. In particular, it needs to allocate huge memory space for storing the calculation

histories of 3D forward projection.

Inspired by a strategy of the OSEM algorithm which sequentially updates an ordered
sequence of block sinograms, we apply block iteration-based optimization to (4.3) to
reduce memory usage of calculation histories of the 3D forward projection for each

optimization, as follows,

D
0" = argmin ) (4% (61g) ~ yo") O me, (5.1)
d=1

where D and d represent the number of ordered subsets of the sinogram and the index
of the subsets, respectively. A is a system matrix that denotes the probability of each
voxel to each LOR, and f is a neural network with trainable parameters 6. g

represents prior information as the network input. y, is the measured projection data,
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© represents the Hadamard product, and m is the binary mask of the detector gaps. We
sampled each subset to equally spaced angles to mitigate geometric correlations between
subsets. In this implementation, the system matrix A stores as a sparse matrix in a

coordinate list format to reduce memory usage.

This modification in (5.1) can realize a practical implementation of a fully 3D PET
image reconstruction. However, it should be noted that the optimization in (4.3) and (5.1)
cannot strictly converge to the same solutions. This situation is similar to the relationship
between the MLEM and OSEM algorithms: the OSEM algorithm does not converge to

the true ML solution and sometimes falls into the limit cycle problem [125,126].
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5.2.2 Penalization for DIP optimization

As described in the Section 2.1.2, the MAP image reconstruction that integrates
image priors has been used to achieve better image noise and contrast characteristics. In
practical MAP reconstruction on commercial PET scanners, the RDP [127] has been
introduced for the image prior [128], as follows,

RDP(x) = Z Z (g =) (5.2)

T iR, (% +2) +¥|x — x|

where N; represents a set of neighboring voxels for the j-th voxel, and y is the shape
of the RDP function. The RDP calculates the differences between neighboring voxels in
the image domain. The RDP applies more smoothing in (relatively) low-activity regions
and less smoothing in high-activity regions in the image domain. The MAP reconstruction
with the RDP serves as a better penalty for PET imaging, achieving better contrast

recovery and reduced background noise compared to the OSEM algorithm [129].

Inspired by MAP reconstruction, we introduce the RDP function into the loss
function as a penalization of the end-to-end DIPrecon to improve the PET image quality

and mitigate the overfitting problem in the DIP optimization, as follows,

D
0" = argmin ) (4%f(6lg) ~yo*) O m?ll + BROP(f0lg)),  (53)
a=1

where [ is the hyperparameter of the regularization.
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5.2.3 Implementation

Figure 5.1 illustrates an implementation overview of the proposed fully 3D end-to-
end DIPrecon algorithm. For the experiments, we used the same 3D U-Net architecture

that was presented in Figure 4.1.

The proposed fully 3D end-to-end DIPrecon algorithm performs the following steps.
(1) The prior information of the MR image is input into the network. (2) The PET image
is obtained from the network output. (3) The blurred output image is obtained through a
fixed convolution layer which calculates a shift-invariant blurring model of the PET
scanner in the image-space domain. Please note that the fixed convolution layer is
inspired by PSF reconstruction to improve the PET image quality. (4) The forward
projection is sequentially calculated by the dot product of the blurred output image and
the block sparse system matrix at each iteration to obtain each estimated block sinogram.
(5) The loss is calculated with each measured block sinogram and estimated block
sinogram. (5) The network parameters are sequentially updated in a mini-batch
optimization manner through the back-propagation algorithm. We used the Siddon
algorithm to implement 3D forward projection operation [130], and the Gaussian kernel

with ¢ = 0.5 voxels was used for the kernel of the fixed convolution layer.

In the experiments, we used the stochastic L-BFGS algorithm [131] that extended to
a mini-batch optimization. The experiments were conducted on a computer using the
Ubuntu 20.04 with an NVIDIA A100 GPU with 80 GB of memory. The network models

were implemented using PyTorch 1.12.1 (https://pytorch.org/).
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5.3 Experimental setup

5.3.1 Computer simulation

We utilized 20 brain phantoms from the BrainWeb database [84,85] and generated
projection data through Monte Carlo simulation. The radioactivity contrast ratios for gray
matter, white matter, and cerebrospinal fluid were set to 1:0.25:0.05, reflecting the typical
distribution of the '®F-FDG. The attenuation coefficients were assigned to 0.00958 mm!
for soft tissue and 0.0151 mm! for bone, respectively. In addition, three spherical tumors
of 21, 15, and 12 mm diameters with contrasts of 1.1, 1.2, and 1.5 were inserted into white

matter area, which cannot be identified on the MR image.

For the experiment, we assumed the same brain-dedicated PET scanner [111] as
described in the Subsection 4.3.1. We excluded a positron range, angular deviation, and
random events in the experiment. The scatter events were also excluded from the list-
mode data to simplify the simulation. The 3D PET sinogram was created from the
simulated list-mode data using nearest neighbor interpolation with the ring difference

binned with a span of seven.

The sinogram and PET image sizes were 128 angles x 128 bins x 64 slices % 19
oblique angles, and 128 x 128 x 64 voxels with 3.0 x 3.0 x 3.221 mm/voxel. The
simulated sinogram had 2,921,540 counts. Before the reconstruction, both component-

based normalization and attenuation correction were performed on the sinogram space.

For the quantitative evaluation, the PSNR and SSIM were used as shown in
Equations (3.7) and (3.8). Additionally, we computed the CRC in (4.5) and the

background STD in (4.6).
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5.3.2 Real preclinical PET data

The real preclinical experiments were approved by the Animal Ethical Committee of
the Central Research Laboratory, Hamamatsu Photonics K.K. (Approval number: HPK -

2017-02).

We used the same real preclinical '*F-FDG PET data as in the Subsections 3.3.2 and
4.3.2. The scatter correction was implemented through a convolution subtraction method,
and attenuation correction was executed by reprojecting the transmission image into 3D

sinogram space. Random correction was performed by subtracting delayed coincidence.

The low-dose PET data were simulated by periodic 1/20 downsampling of the
measured list-mode emission data. The sinogram and PET image sizes were 128 angles
% 128 bins x 64 slices % 19 oblique angles, and 128 x 128 x 64 voxels with 0.65 % 0.65
x 1.0167 mm/voxel. A T1-weighted MR image was scanned on a different day and was
manually registered to PET image by two radiological technologists, as in the Subsection

4.3.2.
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5.3.3 Comparison algorithms

In the experiments, we compared the proposed fully 3D end-to-end DIPrecon
algorithm with the MLEM, MAPEM with the RDP function [124], and hybrid DIPrecon
algorithms [112]. It should be noted that the image-space PSF reconstruction were used

in these comparison algorithms for fair comparison.

We used 100 iterations for the MLEM and MAPEM algorithms, and 200 main
iterations with two sub-iterations for the EM reconstruction and ten sub-iterations for the
DIP optimization were used for the hybrid DIPrecon algorithm, which are the same

settings for the hybrid DIPrecon algorithm as employed in the original paper [112].
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5.4 Results

5.4.1 Computer simulation

Figure 5.2 displays the reconstructed results for the simulated data using different
regularization parameters, and Figure 5.3 demonstrates the impact of the regularization
parameter on the proposed fully 3D DIPrecon algorithm with two subsets. We achieved
more detailed brain structures and more stable optimization with the regularization

parameter of 5 x 10”. Therefore, we selected this value in the experiments.

Figure 5.4 presents the reconstructed results for the simulated data using different
algorithms. The simulation results indicated that the proposed fully 3D end-to-end
DIPrecon with the RDP enhanced the PET image quality by reducing the statistical noise
and maintaining the brain structures and the inserted tumor contrast. The visual results
are supported by the highest PSNR achieved with the proposed fully 3D end-to-end

DIPrecon algorithm.

Figure 5.5 illustrates the tradeoffs between the tumor CRC and STD for different
reconstruction algorithms. The trade-oft curves are averaged over ten independent and
identically distributed samples from the same digital brain phantom. The tradeoff curves
demonstrate that the proposed end-to-end DIPrecon algorithm achieves competitive

results with the hybrid DIPrecon algorithm in the CRC and the STD.

Figure 5.6 illustrates the influence of the RDP term on the PSNR for the proposed
end-to-end DIPrecon algorithm. The RDP term into the loss function of the proposed
algorithm significantly enhanced the reconstruction performance compared to that of the
algorithm without the RDP. Additionally, the RDP term did not compromise the

quantitative performance, even with an increased number of iterations.
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We assessed the uncertainty and variability of the proposed DIPrecon algorithm by
using ten independent and identically distributed samples from the same digital brain
phantom. Figure 5.7 presents the voxel-wise mean and standard deviation images. We
found that the variability of the proposed DIPrecon algorithm was less than or equal to
that of the other algorithms. Figure 5.8 shows the PSNR results of ten independent and
identically distributed simulation samples, which achieved the highest values for the

proposed end-to-end DIPrecon algorithm with RDP.

Figure 5.9 represents the reconstructed results of the simulation data using different
numbers of subsets, and Figure 5.10 demonstrates the impact of the numbers of subsets
on the PSNR. It is important to note that the end-to-end DIPrecon algorithm is not feasible
even on current best GPU boards such as NVIDIA A100 with 80GB memory, unless the
number of subsets is greater than two due to the limitations of GPU memory. Similar
curves were observed across these subsets, suggesting that the proposed block iteration

algorithm effectively yielded high-quality images without any training dataset.

MR image Ground truth B =1e-08 B = 5e-09 B =1e-09 B=1e-10

® & & & @&

Figure 5.2: Reconstructed results of the human brain '®F-FDG computer simulation with different

regularization parameters 8 with two subsets. The figure is reprinted from the work of Hashimoto et

al. [123] (© 2023 IPEM)
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Figure 5.3: Impact of the settings of the regularization parameter B setting with two subsets, in the

PSNR for the proposed fully 3D end-to-end DIPrecon algorithm. The figure is reprinted from the work
of Hashimoto et al. [123] (© 2023 IPEM)

MR Ground truth MLEM MAPEM Hybrid DIPrecon Proposed w/o RDP Proposed w/ RDP
Image (PSNR) (14.27 dB) (19.81 dB) (20.14 dB) (20.70 dB) (21.08 dB)
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Figure 5.4: Transaxial and coronal slices of the reconstructed images and their magnified images of

the red squared regions by different reconstruction algorithms in the computer simulation. The
columns correspond to the MR images, ground truth, reconstructed images obtained using the MLEM,
MAPEM, hybrid DIPrecon, and the proposed end-to-end DIPrecon without RDP (Proposed w/o RDP)
and with RDP (Proposed w/ RDP) (left-to-right). The PSNR values for each algorithm are provided
below the name of the algorithm. The figure is reprinted from the work of Hashimoto et al. [123] (©
2023 IPEM)
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Figure 5.5: Mean tradeoffs between the tumor CRC and STD for the human brain 'F-FDG computer
simulation. Markers are plotted every ten iterations from one to 100 in the MLEM and MAPEM
algorithms, every ten iterations from one to 200 in the hybrid DIPRecon algorithm, every two epochs
from 1 to 20 in the proposed algorithm without RDP (Proposed w/o RDP), and every three epochs
from 1 to 50 in the proposed algorithm with RDP (Proposed w/ RDP). The figure is reprinted from the
work of Hashimoto et al. [123] (© 2023 IPEM)
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Figure 5.6: Impact of the RDP term on the PSNR for the proposed fully 3D end-to-end DIPrecon
algorithm. The figure is reprinted from the work of Hashimoto et al. [123] (© 2023 IPEM)
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Figure 5.7: Mean and standard deviation PET images of ten independent and identically distributed

Mean
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samples from the same digital brain phantom for different reconstruction algorithms. From left to right,
the MAPEM with the RDP, hybrid DIPrecon, proposed end-to-end DIPrecon without RDP (Proposed
w/o RDP), and proposed end-to-end DIPrecon with RDP (Proposed w/RDP). The figure is reprinted
from the work of Hashimoto et al. [123] (© 2023 IPEM)
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Figure 5.8: Quantitative results of ten independent and identically distributed samples from the same
digital brain phantom for different reconstruction algorithms. From left to right, the MAPEM with the
RDP, hybrid DIPrecon, proposed end-to-end DIPrecon without RDP (Proposed w/o RDP), and
proposed end-to-end DIPrecon with RDP (Proposed w/RDP). The figure is reprinted from the work
of Hashimoto et al. [123] (© 2023 IPEM)
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Figure 5.9: Reconstructed results of the human brain computer simulation with '®F-FDG contrast for
different number of subsets. The figure is reprinted from the work of Hashimoto et al. [123] (© 2023
IPEM)
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Figure 5.10: Impact of the number of subsets in terms of the PSNR for the proposed fully 3D end-to-
end DIPrecon algorithm. The figure is reprinted from the work of Hashimoto et al. [123] (© 2023
IPEM)
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5.4.2 Real preclinical PET data

Figure 5.11 represents the reconstructed results with subsets 2 for the low-dose real
preclinical PET data using different algorithms. The proposed end-to-end DIPrecon
algorithm with the RDP achieved the highest PSNR and offered more fine representations
of putamen structures in low-dose PET imaging, compared with the other reconstruction

algorithms.

Figure 5.12 displays the line profiles through the putamen regions using different
algorithms, with the best recovery of the putamen uptake being observed for the proposed
algorithm with the RDP. These results suggested that the proposed fully 3D end-to-end
DIPrecon algorithm offers more precise quantitative reconstruction for low-dose PET

imaging.

MR image MLEM(Full count) MLEM MAPEM Hybrid DIPrecon Proposed w/ RDP
9 (PSNR) (25.35 dB) (31.84 dB) (30.31 dB) (33.23 dB)

@ 0 O

ke

Figure 5.11: Reconstruction results of the reconstructed images and their magnified images of the red

squared regions by different reconstruction algorithms for the real preclinical low-dose '*F-FDG PET
data. The columns correspond to the MR images, reconstructed images obtained using the MLEM
with full count data and low-dose data, MAPEM, hybrid DIPrecon, and the proposed end-to-end
DIPrecon with RDP (Proposed w/ RDP) (left-to-right). The PSNR values for each algorithm are
provided below the name of the algorithm. The figure is reprinted from the work of Hashimoto et al.

[123] (© 2023 IPEM)
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Figure 5.12: Line profiles for the real preclinical low-dose 'F-FDG PET data by different
reconstruction algorithms. The profile line is represented in the upper left. Triangular arrows indicate

the putamen areas. The figure is reprinted from the work of Hashimoto et al. [123] (© 2023 IPEM)
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5.5 Discussion

In this Chapter, we introduced a practical implementation of a fully 3D PET image
reconstruction using the DIP framework in an end-to-end manner. The proposed fully 3D
end-to-end DIPrecon algorithm incorporated a 3D forward projection model into a loss
function, and we modified the loss function to block iteration and sequential learning of
an ordered sequence of block sinograms. Additionally, we integrated the RDP term in the
loss function to improve the PET image quality and suppress the overfitting problem of

the DIP optimization.

As shown in Figure 5.2 and Figure 5.3, the hyperparameter of the regularization
significantly influenced the smoothness of the reconstructed PET images. The results
showed that [ is an important hyperparameter that can adjust the contrast and noise
characteristics. It should be noted that the scaling of f is substantially different from that
used in the MAPEM [127], which is the original work in the RDP function. This is
because the MSE was employed as the loss function in the proposed algorithm, whereas

the MAPEM utilizes the negative log-likelihood as the objective function.

The proposed end-to-end DIPrecon algorithm demonstrated comparable
performance to the hybrid DIPrecon algorithm, which is the same conditions as the
proposed algorithm, as shown in Figure 5.5: it is consistent with the results for 2D PET
data in Chapter 4. The proposed end-to-end DIPrecon algorithm with the RDP achieved
superior PET image quality by suppressing image noise while preserving the brain
structures and inserted tumors than the hybrid DIPrecon algorithm. It would be interesting
to investigate the impacts of the different contrast PET tracers and tumors in the future,

as the results were based on the largest inserted tumor.
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The RDP term significantly enhanced the PET image quality, resulting in a stable
optimization, as shown in Figure 5.6, where the graph exhibits a plateau at the highest
PSNRs. The results showed that incorporating the RDP term into the loss function
suppresses the overfitting problem of the DIP optimization and can eliminate the early
stopping in the DIP framework. Therefore, strict monitoring of the optimization process

is not required for the proposed end-to-end DIPrecon algorithm with the RDP.

The variability of the proposed algorithm with RDP is lower than or comparable to
that of other reconstruction algorithms, as shown in the standard deviation images in
Figure 5.7. In addition, neither the Hybrid DIPrecon algorithm nor the proposed end-to-
end DIPrecon algorithm increased the variability around the inserted tumors. This result
means that the proposed algorithm is stable in processing even when tumors cannot be
identified on the MR image. The mean image of the proposed DIPrecon algorithm in
Figure 5.7 obtained smooth white matter areas, suggesting that the heterogeneity in these

areas in Figure 5.4 could be attributed to statistical variations.

In the real preclinical experiment, the proposed end-to-end DIPrecon algorithm with
the RDP achieved superior performance compared to the other reconstruction algorithms
in the PSNR. Additionally, the proposed DIPrecon algorithm successfully restored the
putamen uptake and structures even when the 1/20 low-count PET data were used. In
contrast, the hybrid DIPrecon algorithm did not restore the uptake and structures. These
preclinical results demonstrated that the proposed DIPrecon algorithm has the potential
to be used not only for the simulation data but also for real low-dose PET imaging.
However, there were regions of insufficient recovery at tissue boundaries with the

proposed DIPrecon algorithm, which is a future issue.

A block iterative algorithm is critical to practically implementing our fully 3D end-
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to-end DIPrecon algorithm. The original DIP framework generally does not use a mini-
batch training manner because it optimizes for a single target image [33,34]. On the other
hand, we introduced a block iterative algorithm that implemented an ordered sequence of
block sinograms, such as the OSEM algorithm, in a mini-batch training manner. The end-
to-end fully 3D DIPrecon implementation does not even compute on current best GPU
boards without the block iteration algorithm due to the limitations of the GPU memory.
The proposed DIPrecon algorithm can reduce the GPU memory usage by increasing the
number of subsets. For instance, the histories of the 3D forward projection, which
consumed most of the GPU memory, can be reduced by a factor of 4 with 4 subsets. The
experimental results shown in Figure 5.10 demonstrated that the number of subsets does
not significantly affect the image quality in PSNR, suggesting that the proposed end-to-
end DIPrecon algorithm is a practical and straightforward solution even for middle-range

GPU boards.

In general, the optimization of the deep learning tends to converge on slightly
different solutions depending on the size of the mini-batch [132]. For example, relatively
small batches tend to converge to a flat minimum, while large batches tend to converge
to a sharp minimum. Similar phenomena may occur with the proposed DIPrecon
algorithm because the proposed algorithm implements block iteration in a mini-batch
optimization manner. This suggests that the number of subsets influences the network
convergence of the proposed DIPrecon algorithm, leading to variations in network
parameters and PET images across different subsets. However, the impact of these

phenomena on the PET image quality and characteristics remains unclear.

The proposed end-to-end DIPrecon algorithm computes the trainable parameters of

the neural network in a one-step optimization using only deep learning frameworks. This
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implementation differs from the hybrid DIPrecon algorithm, which optimizes two
separate sub-problems, including the EM reconstruction and DIP optimization processes.
Consequently, the proposed end-to-end DIPrecon algorithm is free from the settings of
multiple hyperparameters: it requires only three hyperparameters of the number of
iterations and subsets, as well as the learning rate. On the other hand, the hybrid DIPrecon
algorithm requires five hyperparameters of the number of main iterations, two sets of sub-
iterations, the regularization parameter, and the learning rate. In addition, the PET image
quality can be easily adjusted with only one regularization parameter 5, when the RDP
term is used in the proposed DIPrecon algorithm. Thus, we concluded that the proposed
DIPrecon algorithm is easy and straightforward implementation for fully 3D end-to-end

PET image reconstruction.

The proposed DIPrecon algorithm employed the MR image as a network input to
improve the PET image quality, drawing from previous studies that also used the
conditional DIP framework[76-78,112,113]. Chapter 4 highlighted that the DIPrecon with
random noise input had worse noise characteristics compared to the MR image input.
Therefore, it is important to note that there is a potential degradation in noise

characteristics with random noise input in the proposed DIPrecon algorithm.

The majority of deep learning-based PET image reconstruction algorithms are data-
driven, utilizing trained neural networks that learn from large training datasets consisting
of high- and low-quality PET images. The DIPrecon algorithms are not limited by the
quality of training datasets because it does not face performance restrictions related to
domain adaptation capabilities, such as variations in PET tracers, scanners, organs, and
diseases. In addition, there is no theoretical upper limit to the quality of images that can

be enhanced using this algorithm because of the absence of the above restrictions. Thus,
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the proposed DIPrecon algorithm can enhance the performance of low-dose PET image
reconstruction as well as can extend the capabilities of achieving high-quality PET image

reconstruction beyond the current baselines.

The limitation of the study was the stability of the network training as the number of
subsets increased, possibly due to the complexity of network optimization with randomly
initialized parameters. The implementation of a pre-trained network, as recommended by

Cui et al. [133] and Onishi et al. [134], might stabilize the network training.

Data corrections such as attenuation and scatter corrections are critical to the success
of the end-to-end reconstruction framework. In the current implementation, we perform
data corrections on the sinogram space prior to the reconstruction. In the future, a

seamless integration of these corrections is needed.

Another area for improvement is its intensive computational cost. The current
processing time requires approximately 13 minutes per epoch, positioning it as
considerably more resource-intensive than other supervised reconstruction algorithms.
Therefore, we need to develop a more practical algorithm for accelerating the processing
time in clinical setting. We are currently working on accelerating the DIPrecon algorithm

using a two-step optimization method [135].

The experiments of this study were limited to the Monte Carlo simulations of the
human brain "*F-FDG PET data and the real preclinical monley brain '*F-FDG PET data.
Future research will expand to include clinical trials with various PET tracers, scanners,

organs, and diseases.



| 101

|6 Conclusion

In this thesis, we aimed at improving PET image quality in the frameworks of the
PET image denoising and reconstruction, using the conditional DIP. First, we described
the basic principles of the PET imaging, image reconstruction, and deep learning. Then,
we introduced the conditional DIP framework for PET image denoising and expanded it
to 4D dynamic PET imaging. We proposed the iterative PET image reconstruction
incorporating the conditional DIP framework, called DIPrecon. Finally, we developed the

DIPrecon for fully 3D PET data.

Chapter 3 first introduced the conditional DIP framework for PET image denoising,
which does not require a prior training dataset, and then expanded the conditional DIP
framework to 4D dynamic PET imaging. We evaluated the denoising performance of
dynamic PET imaging using computer simulation and real preclinical data scanned by the
animal PET scanner. The proposed conditional DIP denoising algorithm showed superior
performance both visually and quantitatively in computer simulation and real data

experiments compared with other denoising algorithms.

Chapter 4 proposed the iterative PET image reconstruction incorporating the
conditional DIP framework, called DIPrecon. The DIPrecon incorporated the conditional
DIP framework into iterative image reconstruction to achieve powerful noise reduction
while measuring consistency with measured emission data, fundamentally solving the
challenges of post-processing. We evaluated the proposed DIPrecon with conventional
iterative reconstruction algorithms using Monte Carlo simulation data and real preclinical
data. The proposed end-to-end DIPrecon algorithm showed superior performance in

computer simulation and real preclinical data compared to other conventional
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reconstruction algorithms. Furthermore, the proposed algorithm also demonstrated
comparable performance and faster calculation time compared to the hybrid DIPrecon

algorithm.

Chapter 5 expanded the DIPrecon to fully 3D PET data. We modified the end-to-end
DIPrecon algorithm to a block iteration and sequential learning of an ordered sequence
of block sinograms. In addition, we implemented the RDP function to the loss function
of the network to further improve the quantitative accuracy of the PET image. We
evaluated the proposed fully 3D end-to-end DIPrecon with conventional iterative
reconstruction algorithms using Monte Carlo simulation data and real preclinical data and

can produce high-quality images in computer simulation and real preclinical data.

In actual clinical situations, high-speed calculations that do not interfere with daily
operations are required. The main advantages of the proposed conditional DIP denoising
introduced in Chapter 3 are its fast computation time and easy implementation, which can
potentially solve the above challenges. However, there is a risk of accidentally removing
important image information, such as lesions, along with noise because the conditional
DIP denoising is a post-processing method. The DIPrecon introduced in Chapter 4 can
solve their challenges because this optimization is performed while measuring
consistency with measurement data. As introduced in Chapter 5, we can push the

DIPrecon algorithm to practical reconstruction by expanding it to fully 3D PET data.
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