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Abstract 

Although positron emission tomography (PET) serves as a powerful tool for in vivo 

diagnosis, the impact of the noise on reconstructed images presents a substantial 

challenge due to the fewer counts present in acquired data. Such noise potentially 

degrades the accuracy of quantitative analysis and the detectability of lesions. Recently, 

several deep learning-based post-processing and reconstruction have been developed to 

reduce the noise in reconstructed images. However, deep learning may not provide 

expected performance when a domain gap occurs between training and test data. To solve 

the challenge, deep image prior (DIP) has attracted attention for denoising task. DIP is a 

kind of unsupervised method that solves inverse problems by using the inductive bias of 

the network structure as a regularization without prior training datasets. This thesis aims 

at improving PET image quality using the DIP, which does not depend on the domain of 

training data such as types of PET scanners and tracers. The first part of the thesis 

introduces a PET image denoising method using a conditional DIP and proposes a novel 

network architecture for 4D dynamic PET denoising. The second part of the thesis 

proposes the iterative PET image reconstruction incorporating the conditional DIP in an 

end-to-end manner. Then, the proposed reconstruction algorithm expands 2D PET data to 

practical, fully 3D PET data. The main advantages of the proposed denoising method are 

its fast computation time and easy implementation, which can potentially be helpful in 

clinical situations. On the other hand, the proposed reconstruction method, which 

performs optimization while measuring consistency with measured data, can reduce the 

loss of detailed information such as small structures due to over-smoothing. 
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Positron emission tomography（PET）は生体内の薬物動態を非侵襲に観察で

きる強力な手法であるが、PET は測定できるカウントが少なく、再構成画像はノ

イズの影響を受け、解析精度や病変検出能を低下させる恐れがある。近年、再構

成画像のノイズを低減するために深層学習を利用した後処理や画像再構成が多

く開発されている。ただし、深層学習は学習データとテストデータでドメインギ

ャップが生じた場合、期待した性能が得られないことがある。この問題を解決す

る方法として、deep image prior（DIP）を利用したノイズ低減法が注目されてい

る。DIP は教師なし学習の一種であり、学習データセットを利用せず、ネットワ

ーク構造に起因する帰納バイアスを正則化として利用し逆問題を解く手法であ

る。そこで本論文では、DIP を用いることで学習データのドメイン、すなわち PET

装置や薬剤の種類に依存しない画質改善手法を開発することを目的とする。最

初に、条件付き DIP を用いた PET 画像ノイズ除去法を提案し、それを 4 次元 PET

データへ拡張するための新規ネットワーク構造を考案した。次に、条件付き DIP

を組み込んだ end-to-end 型の反復 PET 画像再構成を提案し、それを 2 次元 PET

から 3 次元 PET データへ拡張する実用的な手法を開発した。提案ノイズ除去法

は、計算が高速かつ実装が簡単な点が最大の特徴であり、実際の臨床現場での普

及が期待できる。一方、計測データとの整合性を測りながら最適化を行う提案再

構成法は、過度な平滑化によって微細構造などの情報が消失するのを防ぐ効果

が期待できる。
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1 Introduction 

Positron emission tomography (PET) is a molecular imaging technique to visualize 

and quantify the distribution of radioactive tracers labeled with positron-emitting 

radioisotopes (RIs), such as 11C, 13N, 15O, and 18F, injected into living human bodies [1]. 

It enables the observation of various biochemical processes in vivo from blood flow, 

glucose metabolism to neural receptor activity [2]. Thus, it is utilized not only in the 

diagnosis of cancer [3,4], and neurodegenerative diseases such as Alzheimer's disease 

[5,6], but also in fundamental neuroscience research, particularly in study of higher brain 

functions [7].  

While PET serves as a powerful tool for definitive in vivo diagnosis, the impact of 

the noise on reconstructed images presents a substantial challenge relative to other 

tomographic modalities, such as X-ray computed tomography (CT) [8]. This is 

attributable to the fewer counts present in the acquired data. Such noise potentially 

degrades the accuracy of quantitative analysis and the detectability of the lesions, which 

may cause missed lesions [9-11]. 

A straightforward strategy for keeping PET image quality is to increase the amount 

of radioactive tracer injected into the living human body. However, it is sometimes 

difficult to apply this way due to the increased radiation exposure, which may potentially 

increase lifetime cancer risk [12] and the limitations in high count-rate capabilities of PET 

systems [13]. An alternative solution is to extend the PET scanning time; this could lead 

to psychological discomfort for patients, and some may find it challenging to stay 

motionless for extended periods during the PET examination [14]. Therefore, there is a 

need for noise reduction strategies that neither increase the radiation exposure nor extend 
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the scanning time. It would not be an overstatement to say that the evolution of PET 

imaging has been a continuous struggle to overcome image noise. 

From hardware perspective, improving the quality of PET images primarily involves 

developing high-sensitivity PET scanners. This improvements can be achieved by using 

radiation detectors of greater sensitivity [15,16] and optimization of scanner geometry to 

detect larger solid angles [17-20]. Alongside hardware advancements, there are 

significant efforts to improve PET image quality through advanced image denoising and 

reconstruction techniques [21-23]. This thesis focuses on PET image denoising and 

reconstruction techniques for improving PET image quality without PET instrumentation 

modifications. 

Techniques for improving PET image quality through denoising and reconstruction 

have traditionally been realized by handcrafted filters or artificial prior information. 

These have included algorithms such as the Gaussian filter, guided filter [24], nonlocal 

means filter [25,26], block-matching filter [27] for post-denoising. For iterative 

reconstruction, priors such as the Gibbs prior [28] and patients' anatomical information 

[29,30] have been utilized. The advent of deep learning has revolutionized PET image 

denoising and reconstruction by introducing data-driven approaches that learn optimal 

denoising and reconstruction strategies directly from the huge datasets [31,32]. However, 

to apply deep learning to medical imaging, including PET, it is necessary to overcome the 

major hurdle of acquiring a large number of high-quality training datasets. In addition, 

negative effects on PET image quality should be considered for PET imaging if there is a 

domain gap between training and testing datasets resulting from different PET scanners 

or other radioactive tracers. 

The work presented in the thesis aims to improve PET image quality in the 
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frameworks of the PET image denoising and reconstruction, using a deep image prior 

(DIP) [33,34]. The DIP realizes an unsupervised deep learning method for solving inverse 

problems such as denoising, which works a neural network structure as an intrinsic 

regularizer and does not require the preparation of a prior training dataset. Therefore, it is 

expected to solve the domain gap problem mentioned above. In this thesis, Chapter 2 

describes the basic principles of the PET imaging and deep learning technology, 

especially image reconstruction and the DIP. Chapter 3 presents about the PET image 

denoising method using the conditional DIP and the application to dynamic PET imaging. 

Chapter 4 discusses the 2D PET image reconstruction using the conditional DIP, and 

Chapter 5 explores its extension to fully 3D PET data. 
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2 Basic principles 

2.1 Positron emission tomography 

2.1.1 Basics of positron emission 

tomography 

A distinctive advantage of PET over other tomographic scanners such as X-ray CT 

and magnetic resonance imaging (MRI) is its superior molecular sensitivity, which 

enables the precise quantification of biological functions in the living body [1]. 

Figure 2.1 shows a schematic illustration of the principle of the PET system. Within 

the sequence of PET scans, the process begins with the generation of positron-emitting 

RIs, typically synthesized in a cyclotron. After their production, these RIs are chemically 

incorporated into radiopharmaceutical compounds, called PET tracers. These PET tracers 

are then administered to the patient body, with the choice of PET tracers allowing for 

targeted investigation of biological functions with specific organs, including blood flow, 

metabolism, and receptor activity. Figure 2.2 shows the PET tracer 18F-fluoro-2-deoxy-

D-glucos (18F-FDG), which is commonly utilized for cancer diagnosis as well as cardiac 

and brain disorders [35-37]. Positrons emitted from the RI source interact with electrons 

within the body, leading to annihilation events. Each annihilation produces a pair of 511 

keV gamma rays, which are emitted in opposite direction. These gamma rays are 

simultaneously detected by the radiation detectors of the PET scanner in what are called 

coincidence events. The data from these coincidence events are then transferred to a 

computer. Ultimately, PET images are computed through an image reconstruction process. 
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Figure 2.1: Schematic illustration of the principle of the PET system. 

 

 

 

 

 

Figure 2.2: Chemical structure of 18F-FDG. 
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2.1.2 Image reconstruction 

In the early stages of PET image reconstruction, analytical reconstruction techniques, 

notably filtered backprojection (FBP), were predominant [38-40]. Assuming that the two-

dimensional (2D) distribution of radioactive tracers within the body can be represented 

by a continuous function 𝑋(𝑢, 𝑣), the measurement data 𝑌(𝑟, 𝜙), which is also known 

as a sinogram, can be expressed by the following equation [41]: 

𝑌(𝑟, 𝜙) = ∫ 𝑋(𝑟 cos𝜙 − 𝑠 sin𝜙 , 𝑟 sin𝜙 + 𝑠 cos𝜙) 𝑑𝑠
∞

−∞

. (2.1) 

The sinogram represents a series of integrals computed along the s-axis of the image 

𝑋(𝑢, 𝑣)  that has been rotated by an angle ϕ. This integral transformation process is 

commonly referred to as the Radon transform [42]. The foundational concept of FBP lies 

in the projection-slice theorem, which elucidates the direct relationship between the 2D 

Fourier transform of the image 𝑋(𝑢, 𝑣) and the 1D Fourier transform of the projection 

data 𝑌(𝑟, 𝜙). FBP is calculated as the follows: 

𝑋(𝑢, 𝑣) = ∫ 𝑌𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑟, 𝜙)|𝑟=𝑢𝑐𝑜𝑠𝜙+𝑣𝑠𝑖𝑛𝜙𝑑𝜙,
𝜋

0

𝑌𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑟, 𝜙) = ∫ 𝐺(𝜉, 𝜙)|𝜉| exp(2𝜋𝑖𝜉𝑟) 𝑑𝜉
+∞

−∞

𝐺(𝜉, 𝜙) = ∫ 𝑌(𝑟, 𝜙) exp(−2𝜋𝑖𝜉𝑟) 𝑑𝑟,
+∞

−∞

, (2.2) 

where 𝑖 and 𝜉 represent the imaginary unit and variable of the frequency domain. |𝜉| 

is the high pass filter, which is known as a ramp filter. The ramp filter is delivered 

analytically, but its amplification of high-frequency components results in severe noise. 

Thus, various frequency cutoff filters, such as the Shepp-Logan and hamming filters [43], 

have been proposed to mitigate high-frequency noise, though this comes at the cost of 

diminished spatial resolution. Analytical methods like the FBP are lauded for their rapid 
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processing, linearity, and quantitative accuracy. Nonetheless, they are prone to noise 

interference, resulting in streak artifacts in images under low-count situations, as 

illustrated in Figure 2.3. 

Developments in PET image reconstruction have led to the advent of iterative 

reconstruction techniques, among which the maximum likelihood expectation 

maximization (MLEM) algorithm [44-46] is a prominent example. The MLEM algorithm 

integrates statistical and physical models directly into the image reconstruction process. 

Specifically, the MLEM algorithm models the relationship between the image and 

sinogram through Poisson distribution and a system of linear equations [47]. 

𝒚 = Poisson (𝑨𝒙 + 𝒃̅), (2.3) 

where 𝒙 = (𝑥1, 𝑥2, ⋯ , 𝑥𝐽)
𝑇
 represents a vector of voxel values within the image, 𝒚 =

(𝑦1, 𝑦2, ⋯ , 𝑦𝐼)
𝑇  represents a vector of the projection data value, and vector 𝒃̅ =

(𝑏̅1, 𝑏2, ⋯ , 𝑏̅𝐼)
𝑇
  represents an expected background components, such as scatter and 

random coincidence events, and 𝑨 ∈ ℝ𝐼×𝐽  denotes a system matrix, with individual 

elements, 𝑎𝑖𝑗, which represents the probability that a pair of gamma rays originating from 

the j-th voxel are detected along the i-th line-of-response (LOR). The Poisson negative 

log-likelihood function of projection data 𝒚  under image 𝒙 , which is formulated as 

follows, 

𝐿(𝒚|𝒙) = − log 𝑃(𝒚|𝒙) =

𝐶 −∑ {𝑦𝑖 log (∑ 𝑎𝑖𝑗𝑥𝑗
𝐽

𝑗=1
+ 𝑏̅𝑖)−(∑ 𝑎𝑖𝑗𝑥𝑗

𝐽

𝑗=1
+ 𝑏̅𝑖)}

𝐼

𝑖=1
, (2.4)

 

where 𝑃(𝒚|𝒙)  is the probability and 𝐶  is a constant value. The MLEM algorithm 

estimates an image by minimizing (2.4) using following iterative updates, 
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𝑥𝑗
(𝑘+1) =

𝑥𝑗
(𝑘)

∑ 𝑎𝑖𝑗
𝐼
𝑖=1

∑
𝑎𝑖𝑗𝑦𝑖

∑ 𝑎𝑖𝑗′𝑥𝑗′
(𝑘)𝐽

𝑗′=1
+ 𝑏̅𝑖

𝐼

𝑖=1
, (2.5) 

where 𝑘 denotes the current number of iterations. The MLEM algorithm enhances PET 

image quality over the FBP algorithm by incorporating the statistical noise model for PET, 

as illustrated in Figure 2.3. Subsequent to the MLEM algorithm, block iterative 

algorithms, such as the ordered subset expectation maximization (OSEM) [48], were 

proposed as an accelerated algorithm, which divides the projection data into subsets and 

iteratively updates the image with each subset [49,50]. The iterative algorithms can be 

extended to 3D PET data and incorporated physical models by accurately modeling the 

system matrix [51-54]. 

The point spread function (PSF) reconstruction methods were developed to integrate 

the PSF into iterative reconstruction for dedicated and whole-body PET scanners [53]. 

For example, the PSF can be modeled in image space as follows, 

𝒙𝑛+1 =
𝒙𝑛

𝑯𝑇𝑨𝑇𝟏
𝑯𝑇𝑨𝑇

𝒚

𝑨𝑯𝒙𝑛𝑏̅
, (2.6) 

where 𝑯 represents a matrix of PSF kernel in the image space. The PSF reconstruction 

can reduce statistical noise and enhance image contrast and spatial resolution. 

The MLEM algorithm has an unfavorable characteristic in which noise and edge 

artifacts tend to increase as the number of iterations increases [55]. Therefore, practical 

solutions often involve terminating the iterations early or applying post-filtering with the 

Gaussian filter to the reconstructed image. The maximum a posteriori (MAP) 

reconstruction is an alternative solution, which integrates image priors such as the 

smoothness of the image to achieve better noise and contrast characteristics than the 

MLEM algorithm [56-59]. The posterior probability of the PET image 𝒙 given emission 
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data 𝒚 can express through Bayes’ theorem as follows, 

𝑃(𝒙|𝒚) =
𝑃(𝒚|𝒙)𝑃(𝒙)

𝑃(𝒚)
, (2.7) 

where 𝑃(𝒙)  represents the prior probability of the PET image, called the Gibbs 

distribution, as follows, 

𝑃(𝒙) =
1

𝑍
exp(−𝛽𝑈(𝒙)) , (2.8) 

where 𝑍 represents a partition function, and 𝑈 represents an energy function. 𝛽 is a 

hyperparameter to adjust the influence of the prior distribution. The negative log-posterior 

likelihood can be defined as follows, 

− log 𝑃 (𝒚|𝒙) − log𝑃(𝒙) = 𝐿(𝒚|𝒙) + 𝛽𝑈(𝒙). (2.9) 

A typical energy function for the Gibbs distribution can be expressed as follows, 

𝑈(𝒙) =∑ ∑ 𝜔𝑗𝑗′𝑉(𝑥𝑗 − 𝑥𝑗′)

𝑗′𝜖𝑁𝑗𝑗

, (2.10) 

where 𝑉 represents a potential function. 𝑁𝑗 represents a set of neighboring voxels for 

the 𝑗-th voxel. 𝜔𝑗𝑗′  is a weight between neighboring voxels. For example, the quadratic 

prior is often used as the potential function as follows, 

𝑉(𝑥𝑗 − 𝑥𝑗′) = (𝑥𝑗 − 𝑥𝑗′)
2
. (2.11) 

The MAPEM algorithm using Green’s one-step-late method [58] estimates the image 

by minimizing (2.9) using following iterative updates, 

𝑥𝑗
(𝑘+1) =

𝑥𝑗
(𝑘)

∑ 𝑎𝑖𝑗
𝐼
𝑖=1 − 𝛽

𝜕𝑈(𝒙)
𝜕𝑥𝑗

|
𝒙=𝒙(𝑘)

∑
𝑎𝑖𝑗𝑦𝑖

∑ 𝑎𝑖𝑗′𝑥𝑗′
(𝑘)𝐽

𝑗′=1
+ 𝑏̅𝑖

𝐼

𝑖=1
, (2.12) 

Figure 2.3 shows the reconstructed result of the use of the MAPEM with the quadratic 

prior in low-count situations. The MAPEM algorithm provides a smoother PET image 
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than the MLEM algorithm. 

 

 

 

Figure 2.3: Example of the FBP and some iterative PET image reconstruction algorithms, which were 

applied to the same normal and low-dose simulation dataset. The figure is reprinted from the work of 

Hashimoto et al. [22] (CC BY 4.0) 
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2.2 Deep learning 

Deep learning is a state-of-the-art subset of machine learning that operates through 

artificial neural networks with multiple layers, mimicking the human brain's structure and 

function [31,32]. In general, training deep learning models involves feeding them large 

amounts of training datasets and adjusting trainable parameters using an optimization 

algorithm such as stochastic gradient descent (SGD) [60]. This process minimizes a loss 

function, gradually improving the model's accuracy. Deep learning has significantly 

advanced fields such as computer vision [61] and natural language processing [62], 

achieving remarkable results in image recognition and generation tasks that were once 

challenging for traditional machine learning methods [63]. This thesis focuses on 

convolutional neural network (CNN) architectures, which are widely used in image 

processing tasks. 

 

2.2.1 Convolutional neural networks 

CNN is one of the specialized neural networks widely utilized in image processing 

[64,65]. The most critical component of CNNs is a convolution layer, which performs 

trainable convolution operations and then captures complex details in input data. These 

convolution kernels are optimized through training, and they become finely tuned to 

recognize various features from simple edges to complex shapes and textures. Another 

important component of CNN is nonlinear activation functions, such as the rectified linear 

unit (ReLU), which avoid the vanishing gradient problem in deep networks with many 

layers to enhance the ability to capture nonlinear relationships between input and output 

data. Following convolution layers, CNNs often use pooling layers that perform 
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downsampling to reduce the spatial resolutions of the feature maps. The pooling layers 

reduce the computational cost as well as control overfitting of the network. The CNN 

architectures are composed of combinations of these components, and deeper networks 

can generally learn more complex relationships. 

Figure 2.4 shows the schematic illustration of the U-Net architecture [66,67], a CNN 

structure commonly used in image-to-image translation tasks for medical imaging [68], 

such as segmentation [69,70], denoising and image reconstruction [21,71,72]. The U-Net 

architecture consists of encoding and decoding paths. The encoder path typically 

increases the number of feature maps while downsampling the spatial size of the feature 

maps, and the decoder path conversely reduces the feature maps while upsampling the 

spatial size of the feature maps. Crucially, it integrates skip connections that directly 

concatenate or add feature maps from the encoder to the decoder at the same spatial 

resolutions, thereby preserving fine-grained details for accurate image-to-image 

translation. 

 

Figure 2.4: Schematic illustration of the U-net architecture. The number of feature maps is denoted at 

the top of each box. The pixel size is indicated on the left side of each box. The arrows denote the 

different operations. The figure is reprinted from the work of Hashimoto et al. [79] (CC BY 4.0)  
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2.2.2 Deep image prior 

The DIP framework [33,34] is an innovative approach to image processing in which 

the structure of CNNs acts as intrinsic prior knowledge or regularizers, without preparing 

any training datasets. The DIP can solve various inverse problem tasks such as denoising, 

super-resolution, and inpainting. The training process of the DIP starts with the initialized 

network 𝑓 with trainable parameters 𝜃, taking random noise 𝒛 as input and degraded 

image 𝒙𝟎 as target, and then iteratively optimizes the network parameters as follows. 

𝜃∗ = argmin
𝜃

𝐸(𝒙𝟎; 𝑓(𝜃|𝒛)) , 

𝒙∗ = 𝑓(𝜃∗|𝒛), (2.13) 

where 𝐸(∙) is a loss function, such as the mean squared error (MSE). This optimization 

intuitively converges to the original degraded image 𝒙𝟎 . However, the optimization 

approaches an undegraded image due to the inductive bias of the CNN structure. Thus, 

the DIP shows the potential to produce high-quality image restorations without preparing 

huge training datasets. This has great potential in situations where it is difficult to prepare 

large amounts of datasets, and expands the range of practical applications of deep learning 

in the medical imaging field. 
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2.2.3 Deep learning for PET imaging 

The landscape of PET image reconstruction is currently experiencing a profound 

transformation, driven by integrating state-of-the-art deep learning algorithms alongside 

advances in computer vision [21,22]. Figure 2.5 delineates a classification of deep 

learning approaches for PET imaging, organized into three principal categories. (1) The 

first category is deep learning methods for PET image denoising. (2) The second category 

includes direct PET image reconstruction methods which are data-driven methods to learn 

a direct mapping from measured data to reconstructed images using huge training datasets 

of sinograms and corresponding PET images. (3) The third category is an iterative 

reconstruction which is a hybrid approach that uses iterative image reconstruction 

frameworks integrated with neural networks.  

(1) Post processing (denoising) method [23] 

The post processing (denoising) task is an inverse problem that restores a clean 

image from a noisy image that is mixed with image noise complicated by the 

reconstruction. The post processing using deep learning learns the nonlinear 

relationship between the clean PET images 𝒙 and the noisy images 𝒙̂ as described 

in the following optimization problem, 

𝜃∗ = argmin
𝜃

𝐸(𝑓(𝜃|𝒙̂), 𝒙) , (2.14) 

 The goal of the post processing methods using deep learning is to obtain the 

nonlinear mappings from low-dose to high-dose PET images in a data-driven manner. 

Compared to traditional post processing methods, the deep learning approaches 

demonstrate better denoising performance while maintaining spatial resolution and 

quantitative performance. 
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(2) Direct image reconstruction method [73,74] 

The direct PET image reconstruction using deep learning learns direct mappings 

from the measured data 𝒚  to the reconstructed PET images 𝒙  through neural 

networks 𝑓 in a data-driven manner, as follows, 

𝜃∗ = argmin
𝜃

𝐸(𝑓(𝜃|𝒚), 𝒙) , (2.15) 

The direct PET image reconstruction is distinct from other methods because it 

aims to explore a way to reconstruct PET images using only training datasets, without 

relying on any physical models such as a forward or back-projection operations. 

(3) Iterative reconstruction method [21,22] 

The iterative PET image reconstruction using deep learning is a hybrid 

framework that integrates existing iterative reconstructions such as the MLEM and 

MAPEM algorithms, which is based on a statistical and physical models, with deep 

learning. The iterative reconstruction using deep learning can be categorized into two 

main ways: a synthetic-based reconstruction using an equality constraint and an 

analysis-based reconstruction using image priors 𝑅, as follows, 

min
𝒙,𝒛
𝐿(𝒚|𝒙)     𝑠. 𝑡.  𝑥 = 𝑓(𝜃|𝒛), (2.16) 

or 

𝒙̂ = argmin
𝒙

(𝐿(𝒚|𝒙) + 𝛽𝑅(𝒙)) (2.17) 

The iterative PET image reconstruction using deep learning can improve PET 

image quality through neural networks as constraints or image priors while measuring 

the consistency between the measured data and the reconstructed image. 
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Figure 2.5: Classification of deep learning approaches for PET imaging in three categories; post-

processing (denoising), direct reconstruction, and iterative reconstruction methods integrated with 

neural networks (NNs). The figure is reprinted from the work of Hashimoto et al. [22] (CC BY 4.0) 
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3 Conditional DIP for reconstructed PET 

images 

3.1 Introduction 

The DIP framework can address inverse problems, such as denoising, without the 

requirement for prior training datasets. This capability has the potential to address the 

fundamental challenges in the field of PET imaging, where the acquisition of large, tracer- 

and scanner-specific clinical datasets is often prohibitive.  

In this chapter, we introduce a conditional DIP framework for PET image denoising. 

Furthermore, we expand the conditional DIP to 4D dynamic PET imaging and evaluate 

the denoising performance of PET imaging using computer simulation and real preclinical 

data scanned by an animal PET scanner, SHR-38000, Hamamatsu Photonics K.K. 
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3.2 Methods 

3.2.1 Conditional deep image prior 

In the image synthesis task of no-flash/flash images [75] using the DIP framework, 

as demonstrated by Ulyanov et al. [33,34], high-quality images can be generated using 

flash images as the network input instead of random noise. This suggests that utilizing 

prior information, such as the same patients’ X-ray CT or MR images, related to the noisy 

PET image as neural network input, may potentially enhance PET image quality in the 

denoising task of the DIP. The PET image denoising task for a conditional DIP framework 

using prior information 𝒈 is represented as follows [76-78], 

𝜃∗ = argmin
𝜃

𝐸(𝒙𝟎; 𝑓(𝜃|𝒈)) , 

𝒙∗ = 𝑓(𝜃∗|𝒈), (3.1) 

where 𝑓 is a neural network with trainable parameters 𝜃, 𝒙𝟎 is noisy PET image, and 

𝐸(∙) is a loss function. In general, PET scans are often followed by X-ray CT or MRI 

scans using PET/CT and PET/MRI scanners to collect anatomical information for 

diagnostic purposes and attenuation correction. Therefore, these CT and MR images can 

be used as prior information 𝒈. However, it is often difficult to install additional CT or 

MRI mechanisms into brain-dedicated PET and animal PET scanners due to design 

constraints, which may not acquire anatomical information. 

In this chapter, we propose a conditional DIP framework that operates without such 

additional anatomical information for dynamic PET imaging [79,80]. In dynamic PET 

imaging, noisy and short-duration PET images are reconstructed in a time series to track 

the kinetics of PET tracers within the body. Therefore, the proposed method uses a static 

PET image, reconstructed by integrating emission data from dynamic PET data frames as 
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prior information, instead of anatomical information. Then, the conditional DIP 

framework denoises the dynamic PET images. 

Figure 3.1 illustrates a example of the proposed conditional DIP framework for 

dynamic PET images. In this procedure, static PET images are input to the network, and 

followed by calculating the loss between the network output and the target dynamic PET 

images. Finally, the trainable parameters 𝜃 of the network are updated to denoise the 

dynamic PET images. The above process is repeated until the optimization is completed. 

 

 

Figure 3.1: Procedure of the proposed conditional DIP framework for dynamic PET imaging. The 

arrows denote the different operations. The figure is reprinted from the work of Hashimoto et al. [79] 

(CC BY 4.0)  
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Figure 3.2 shows a simple example of the original DIP and conditional DIP 

frameworks for dynamic PET imaging. The experimental condition of this example was 

the same as in3.3.1. The original DIP framework when random noise is utilized as the 

network input, obtained blurred images without keeping the edge information, such as 

cortex structures. In contrast, the conditional DIP framework when static image is utilized 

as the network input, not only obtained a comparable level of image smoothness but also 

kept edge details. This demonstration supports the effectiveness of the conditional DIP 

framework for dynamic PET imaging. 

 

 

 

Figure 3.2: Example of the original DIP and conditional DIP frameworks. The arrows denote the 

different operations. The figure is reprinted with a modification from the work of Hashimoto et al. 

[79] (CC BY 4.0) 

 

 

Figure 3.3 illustrates optimization trajectories of the conditional DIP framework for 

dynamic PET imaging. In the PET imaging system, dynamic PET images suffer from 

various artifacts due to scatter, attenuation, statistical noise, and other reconstruction 

errors, which degrade the reconstructed images, as illustrated in the gray manifold region. 
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Traditional optimization-based denoising methods without any prior information 

typically diverge significantly from the ground truth image, as represented by the blue 

trajectory. In contrast, the trajectory of the original DIP denoising tends to conform more 

closely to the ground truth image due to the inductive bias of the CNN structure1, with 

early stopping of the optimization process yielding enhanced PET image quality, as 

indicated by the green trajectory. Using the static PET image as prior information provides 

an advantage whereby the initial point of the optimization is positioned nearer to the 

ground truth point compared to random noise input. Consequently, the optimization using 

the static PET image input is expected to improve PET image quality compared to the 

original DIP with random input, as shown by the red trajectory. 

  

 
1 Inductive biases in CNNs encompass local connectivity, shared weights, and spatial 

hierarchies. These biases enable CNNs to efficiently discern patterns rather than noise in 

images. 
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Figure 3.3: Schematic illustration of the optimization trajectories of the conditional DIP framework 

for dynamic PET imaging. The gray region shows a manifold of degraded noisy dynamic PET images 

from the ground truth image. The trajectories of traditional optimization-based denoising, original and 

conditional DIP methods are shown in blue, green, and red lines, respectively. The arrows denote the 

different operations. The figure is reprinted from the work of Hashimoto et al. [80] (© 2021 IPEM) 

  

Ground truth

Noisy dynamic 
PET image

Optimization w/o 
prior

Manifold of
noisy PET images

Lo
ss

DIP w/
random input

Static PET image
input

DIP w/
Static PET image

Random input



Conditional DIP for reconstructed PET images | 34  

 

 

3.2.2 Network structures and optimization 

In this study, we employed two network structures: the 3D U-Net architecture [79] 

illustrated in Figure 2.4, and 4D branch CNN architecture [80] for dynamic PET image 

denoising. 

The encoding path of the 3D U-Net architecture consists of sequential application of 

two sets of 3 × 3 × 3 convolution layers in three dimensions. Each convolution layer is 

followed by batch normalization (BN) [81] and a Leaky Rectified Linear Unit (LReLU). 

Then, a downsampling operation is executed by a 3 × 3 × 3 convolution layer with a stride 

of two, followed by application of the BN and LReLU. Concomitantly, with each 

downsampling operation, the feature channel is augmented doubled. The decoder path is 

constructed with a 3 × 3 × 3 deconvolution layer and two 3 × 3 × 3 convolution layers, 

followed by the BN and LReLU. In addition, feature maps from the encoder path are 

linked to the corresponding decoder path via skip connections. Finally, the output layer is 

activated by a linear function. 

The 4D branch CNN architecture comprises two components: a feature extractor and 

multiple reconstruction branch modules. The feature extractor module is designed to 

share common spatial and temporal features from 4D dynamic PET images. Subsequently, 

each reconstruction branch module employs these common features output from the 

feature extractor module, to reconstruct each dynamic frame independently. The feature 

extractor module employs the same structure as the 3D U-Net in Figure 2.4. The 

reconstruction branch module is composed of a sequence of three 3 × 3 × 3 convolution 

layers, with each followed by the LReLU, and one 3 × 3 × 3 convolution layer through a 

sigmoid activation for output operations. 
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The 3D U-Net architecture independently performs the conditional DIP optimization 

for each frame by Equation (3.1). The 4D branch CNN architecture performs conditional 

DIP optimization for all dynamic frames in an end-to-end manner as follows, 

𝜃∗ = argmin
𝜃

∑𝑤𝑖

𝑇

𝑖=1

𝐸 ((𝒙𝟎)𝑖; 𝑓(𝜃𝐹,𝑅𝑖|𝒈)) , 

𝒙∗ = 𝑓(𝜃∗|𝒈). (3.2) 

where 𝒙𝟎 represents the 4D dynamic PET images at i-th time frame (𝑖 = 1,2, … , 𝑇). 𝜃𝐹  

and 𝜃𝑅 represent trainable parameters of the feature extractor and reconstruction branch 

modules. 

A sequence pf dynamic PET images exhibits significant variation in amplitude across 

individual frames, resulting in disparate magnitudes of the loss function for each time 

frame. Inspired by the weighted heterogeneous learning method proposed by Fukui et al. 

[82], we introduce loss weights 𝑤, aimed at equalizing the loss contributions from each 

frame to mitigate this discrepancy and improve stability during network training, as 

follows, 

𝑤𝑖 =
min
𝑘

1
𝑁
∑ 𝐸𝑘,𝑗
𝑁
𝑗=1

1
𝑁
∑ 𝐸𝑘,𝑗
𝑁
𝑗=1

, (3.3) 

In Equation (3.3), the denominator represents the mean value of the training loss 𝐸 

across epochs up to 𝑁 for each time frame 𝑘 , while the numerator corresponds to the 

minimum value of the mean training loss. This framework serves to normalize the loss 

function relative to the loss magnitude at each time frame. In this study, the loss weights 

are pre-calculated over 𝑁 = 50 epochs. 

In this study, we used the MSE for the loss function. The SGD with a momentum of 
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0.9 and a learning rate of 0.01 were employed for the optimization. The trainable 

parameters of the networks were initialized using He initialization [83]. The experiments 

were conducted on a computer using the Ubuntu 16.04 with an NVIDIA Quadro RTX 

8000 graphics processing unit (GPU) with 48 GB of memory. The network models were 

implemented using Keras (www.keras.io) with TensorFlow (www.tensorflow.org) as the 

backend.

http://www.keras.io/
http://www.tensorflow.org/
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3.3 Experimental setup 

This subsection describes the details of experimental setup of the computer 

simulation and real preclinical data to evaluate the performance of conditional DIP 

denoising for dynamic PET imaging. 

 

3.3.1 Computer simulation 

The experimental setup for the computer simulation was implemented with 

references to [79,80]. This study used a digital 3D brain phantom from the Brainweb 

database [84,85]. In this computer simulation, the time activity curves (TACs) of the 

glucose metabolism of 18F-FDG in gray matter, white matter, and tumor were generated 

by Feng’s method [86], based on a two-tissue compartment model [87]. Table 3.1 shows 

the kinetic parameters, K1, k2, k3 and k4, and Figure 3.4 shows a plasma input function 

and regional TACs. The dynamic PET scan consisted of 30-time frames of 4 × 20 s, 4 × 

40 s, 4 × 60 s, 4 × 180 s, and 14 × 300 s over 90 minutes, started just after the bolus 

injection of the PET tracer. The regional TACs were averaged in each time frame, and 

then the sinograms of the dynamic PET scan were calculated using a simple forward 

projection method. The sinogram and PET image sizes were 192 angles × 192 bins × 64 

slices and 192 × 192 × 64 voxels with 1.0 × 1.0 × 2.0 mm/voxel. Poisson noise was added 

with approximately 109 coincidence events over 90 minutes, as listed in Table 3.2. In 

order to evaluate the simplified performance of the conditional DIP denoising, an ideal 

PET scanner without any attenuation and scatter was assumed. The image reconstruction 

was performed using the OSEM algorithm with six iterations and 16 subsets. We 

calculated parametric images using the Patlak plot graphical analysis [88] by Pmod 3.802 



Conditional DIP for reconstructed PET images | 39  

 

 

(PMOD Technologies Ltd, Zurich, Switzerland) [89]. The influx rate 𝐾𝑖 was calculated 

from voxel-wise TACs, which corresponds the transfer rate of the irreversible tracer from 

blood vessels to brain tissue, as follows. 

𝐾𝑖 =
𝐾1𝑘3
𝑘2 + 𝑘3

. (3.4) 

The start time of the linear phase after equilibration 𝑡∗ was set to 20 minutes. 

The mean squared bias and variance were computed as indicators of quantitative 

accuracy and noise property, as follows, 

Bias2 =
∑ (𝑥𝑗 − (𝑥GT)𝑗)

2
𝑗∈𝐑

∑ ((𝑥GT)𝑗)
2

𝑗∈𝐑

, (3.5) 

Variance =
∑ (𝑥𝑗 − 𝑥̅)

2
𝑗∈𝐑

∑ ((𝑥GT)𝑗)
2

𝑗∈𝐑

, (3.6) 

where 𝑥 and 𝑥GT represent target and grand truth images, and 𝐑 represents the target 

ROIs. In addition, the following indicators of the peak signal-to-noise ratio (PSNR) and 

structural similarity (SSIM) [90] were used for quantitative evaluation. 

PSNR = 20 log10

(

 
max(𝑥GT)

√
1
𝑁R
∑ (𝑥𝑗 − (𝑥GT)𝑗)

2
𝑗∈𝐑 )

 , (3.7) 

SSIM =
1

𝑁R
∑

(2𝜇𝑗𝑥𝜇𝑗𝑥GT + 𝑐1)(2𝜎𝑗𝑥𝑥GT + 𝑐2)

(𝜇𝑗𝑥
2 + 𝜇𝑗𝑥GT

2 + 𝑐1)(𝜎𝑗𝑥
2 + 𝜎𝑗𝑥GT

2 + 𝑐2)𝑗∈𝐑

, (3.8) 

where 𝜇𝑗𝑥, 𝜇𝑗𝑥GT and 𝜎𝑗𝑥, 𝜎𝑗𝑥GT  represent the mean values and standard deviations in 

the square region on the j-th voxel of 𝑥 and 𝑥GT, respectively. 𝜎𝑗𝑥𝑥GT represents the 

covariance between 𝑥 and 𝑥GT. These indices are calculated within whole brain regions 
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𝐑. 𝑐1 and 𝑐2 were defined as (0.01𝐿)2 and (0.03𝐿)2 with the dynamic range of the 

grand truth 𝐿. 

 

Table 3.1: The kinetic parameters used in this computer simulation. 

Regions K1 k2 k3 k4 

White matter 0.046 0.080 0.052 0.001 

Gray matter 0.071 0.086 0.055 0.001 

Tumor 20.082 0.055 0.085 0.001 

 

 

 

Figure 3.5: The regional time activity curves and plasma input function in the computer simulation. 
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Table 3.2: Coincidence events of each time frame in the experiments. 

  Computer simulation Real preclinical data 

Time frame Time duration 18F-FDG 18F-FDG 11C-raclopride 

1 20 1.13E+05 2.24E+05 5.76E+05 

2 20 4.85E+05 1.31E+06 3.50E+06 

3 20 7.76E+05 2.11E+06 4.27E+06 

4 20 9.71E+05 2.33E+06 4.40E+06 

5 40 2.37E+06 5.10E+06 8.90E+06 

6 40 2.84E+06 5.45E+06 8.97E+06 

7 40 3.25E+06 5.71E+06 8.94E+06 

8 40 3.62E+06 5.89E+06 8.79E+06 

9 60 6.04E+06 9.06E+06 1.28E+07 

10 60 6.68E+06 9.23E+06 1.22E+07 

11 60 7.22E+06 9.37E+06 1.17E+07 

12 60 7.70E+06 9.45E+06 1.11E+07 

13 180 2.53E+07 2.87E+07 3.01E+07 

14 180 2.78E+07 2.89E+07 2.57E+07 

15 180 2.95E+07 2.89E+07 2.20E+07 

16 180 3.08E+07 2.87E+07 1.88E+07 

17 300 5.36E+07 4.73E+07 2.55E+07 

18 300 5.57E+07 4.62E+07 1.97E+07 

19 300 5.75E+07 4.50E+07 1.53E+07 

20 300 5.90E+07 4.37E+07 1.19E+07 

21 300 6.01E+07 4.22E+07 9.26E+06 

22 300 6.11E+07 4.06E+07 7.26E+06 

23 300 6.18E+07 3.91E+07 5.71E+06 

24 300 6.22E+07 3.74E+07 4.50E+06 

25 300 6.25E+07 3.57E+07 3.56E+06 

26 300 6.26E+07 3.42E+07 2.83E+06 

27 300 6.24E+07 3.27E+07 2.25E+06 

28 300 6.22E+07 3.13E+07 1.80E+06 

29 300 6.18E+07 3.00E+07 1.44E+06 

30 300 6.12E+07 2.86E+07 1.15E+06 
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3.3.2 Real preclinical PET data 

The real preclinical experiments were approved by the Animal Ethical Committee of 

the Central Research Laboratory, Hamamatsu Photonics K.K. (Approval number: HPK-

2017-02). 

The dynamic 18F-FDG and 11C-raclopride [91] PET scans of a conscious rhesus 

monkey brain were performed using an animal-dedicated PET scanner (SHR-38000, 

Hamamatsu Photonics K.K.) [92]. The axial and transaxial fields of view (FOV) of the 

PET scanner are 330 mm and 108 mm, respectively, and the spatial resolution at the center 

position is 2.3 mm. The head of rhesus monkey was fixed to a monkey chair using a head 

restraint on the monkey's skull. The head of monkey was set in the PET gantry in parallel 

with the orbitomeatal plane. 

Initially, a 30-minute transmission scan was conducted with a 68Ge–68Ga rod source, 

followed by a dynamic emission scan that spanned 90 minutes and was divided into 30 

distinct time frames: 4 × 20 s, 4 × 40 s, 4 × 60 s, 4 × 180 s, and 14 × 300 s. The 

administered doses for 18F-FDG and 11C-raclopride were 194.7 MBq and 291.7 MBq, 

respectively. The arterial plasma input function for the 18F-FDG PET scan was derived 

by calculating the ratio of the unmetabolized fraction to the total plasma activity. The 

image reconstruction was performed using a 3D dynamic row-action maximum-

likelihood algorithm (DRAMA) algorithm [93] with two iterations and 60 subsets. The 

sinogram and PET image sizes were 360 angles × 360 bins × 103 slices with span of three 

and a ring difference of 19, and 256 × 256 × 103 voxels with 0.65 × 0.65 × 1.0167 

mm/voxel. The PET images were cropped to 192 × 192 × 64 voxels because of the GPU 

memory limitation. The detailed time frame and coincidence events in the experiments 
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are listed in Table 3.2. 

For the 18F-FDG data, the influx rate 𝐾𝑖 was calculated using the Pmod software. 

The putamen and background white matter ROIs were manually set on the co-registered 

MR images, and mean putamen uptakes and background standard deviations were 

calculated for quantitative analyses. 

For the 11C-raclopride data, the non-displaceable binding potential BPND  images 

were generated using the Logan plot graphical analysis [94] using the Pmod software, 

which calculate binding to dopamine D2/D3 receptors as follows, 

BPND =
𝑘3
𝑘4
. (3.9) 

As a reference region, we used the cerebellar cortex region instead of an arterial blood 

input data. The start time of the linear phase after equilibration 𝑡∗ was set to 20 minutes, 

and the efflux rate across the brain blood barrier 𝑘2 was set to 0.15. The putamen and 

background white matter ROIs were manually set on the co-registered MR images. 
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3.3.3 Comparison algorithms 

In the experiments, we compared the conditional DIP using 3D U-Net and 4D branch 

CNN architectures with following algorithms. 

⚫ Gaussian filtering: The Gaussian filtering is often used for post-denoising as a 

baseline method of the PET imaging. The 3D Gaussian filtering is calculated as 

follows, 

(𝑥𝐺𝐹)𝑖 = ∑
exp (−

(𝑖 − 𝑗)2

2𝜎2
)

∑ exp (−
(𝑖 − 𝑘)2

2𝜎2
)𝑘𝜖𝜔𝑖

𝑥𝑗
𝑗𝜖𝜔𝑖

, (3.10) 

where 𝒙  is the noisy image. 𝜎  and 𝜔  represent the standard deviation of the 

Gaussian distribution and window. 

⚫ Guided filtering [24,95]: The guided filtering is widely used as a fast edge-preserving 

filter, which applies for edge-aware denoising as well as the image synthesis task of 

no-flash/flash image denoising. We applied 3D guided filtering which perform a 

linear transformation from a guidance image to the denoised output image. The 3D 

guided filtering is calculated as follows, 

(𝑥𝐺𝑢𝑖𝑑𝑒𝑑)𝑖 =∑𝑤𝑔𝑢𝑖𝑑𝑒𝑑(𝐼)𝑥𝑗
𝑗

, (3.11) 

(𝑤𝑔𝑢𝑖𝑑𝑒𝑑)𝑖𝑗
(𝐼) =

1

|𝜔|2
∑ (1 +

(𝐼𝑖 − 𝜇𝑘)(𝐼𝑗 − 𝜇𝑘)

𝜎𝑘
2 + 𝜀

)

𝑘𝜖𝜔𝑖,𝑘𝜖𝜔𝑗

, (3.12) 

where 𝐼 is the guidance image. 𝜇 and 𝜎2 represent a mean and variance of the 

guidance image. |𝜔|  is number of voxels in the window 𝜔 . 𝜀  represents a 

regularization parameter which penalizes a linear coefficient. In the 
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experiments, we used the same static PET image as the input of the conditional 

DIP as the guidance image for fair comparison.  
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3.4 Results 

3.4.1 Computer simulation 

Figure 3.6 shows the loss curves for each time frame in the 4D branch CNN 

architecture. The differences in the loss curves increased, leading to unstable learning 

curves for the network when the loss weights were not applied for network training. 

Conversely, the differences in the loss curves decreased, and the learning curves of the 

network became stable when the loss weights were used for network training. 

Figure 3.7 displays the transaxial and sagittal slices of the time frame 6, covering 

120–160 s, time frame 26, covering 3900–4200 s, and the Patlak influx constant images, 

calculated by different denoising algorithms in the computer simulation. The qualitative 

assessment demonstrated that the resolution of the conditional DIP processed by the 4D 

branch CNN architecture is notably enhanced in both the early phase of time frame 6 and 

the Patlak influx constant images compared to other denoising algorithms. 

Figure 3.8 illustrates tradeoffs between the mean squared bias and variance for the 

tumor ROIs in the time frame 26 which is 65–70 min post-injection, as well as for the 

Patlak influx constant images. The tradeoff curves demonstrated that the conditional DIP 

processed by the 4D branch CNN architecture reduced bias and variance compared to 

different denoising algorithms. 

Figure 3.9 shows the PSNR and SSIM across different denoising algorithms in the 

Patlak influx constant images. The PSNRs and SSIMs for both conditional DIP processed 

by the 3D U-Net and 4D branch CNN architectures surpass those achieved with the 3D 

Gaussian filtering and guided filtering. These results showed that the conditional DIP 

processed by the 4D branch CNN architecture outperforms other denoising algorithms in 
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terms of performance of noise suppression and quantitativeness. 

 

Figure 3.6: Influence of the loss weights application on the loss. (a) The learning curves without 

applying the loss weights, and (b) with applying the loss weights. The loss weights reduced the 

variance in the loss curves, thereby contributing to the stabilization of network training. The figure is 

reprinted from the work of Hashimoto et al. [80] (© 2021 IPEM)  
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Figure 3.7: Simulation results of (a) the dynamic PET image at the time frame 6, (b) time frame 26, 

and (c) Patlak influx constant image. The columns correspond to the ground truth, reconstructed 

images obtained by the OSEM algorithm, Gaussian filtering, guided filtering, and conditional DIP 

with the 3D U-Net and 4D branch CNN architectures (left to right). The figure is reprinted from the 

work of Hashimoto et al. [80] (© 2021 IPEM) 
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Figure 3.8: Tradeoffs between the mean squared bias and variance for the simulation data at the tumor 

ROIs in (a) the time frame 26 and (b) Patlak influx constant image. The markers corresponding to 2.0, 

2.5, 3.0, 3.5, and 4.0 mm FWHM for the Gaussian filtering, 0.1, 0.5, 0.75, 1.0 and 1.5 ε for the guided 

filtering, 20 000, 15 000, 10 000, 5000 and 500 epochs for the conditional DIP with 3D U-Net 

architecture, and 20 000, 10 000, 5000, 2500 and 1000 epochs for the conditional DIP with 4D branch 

CNN architecture. The images in Figure 3.7 are labeled by filled markers. The figure is reprinted from 

the work of Hashimoto et al. [80] (© 2021 IPEM) 
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Figure 3.9: PSNRs and SSIMs for the simulation data. 
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3.4.2 Real preclinical PET data 

Figure 3.10 displays the transaxial and sagittal slices of the time frame 6, covering 

120–160 s, time frame 26, covering 3900–4200 s, and the Patlak influx constant images, 

calculated by different denoising algorithms in the real preclinical dynamic 18F-FDG data. 

When the guided filtering was applied, which uses the same static PET image information 

for the guidance image as the conditional DIP, it resulted in the loss of structure details 

such as cortex region. Conversely, both the conditional DIP processed by the 3D U-Net 

and 4D branch CNN architectures successfully preserved the detailed structures. Notably, 

the proposed conditional DIP denoising with the 4D branch CNN managed to reduce 

statistical noise while preserving fine details. 

Figure 3.11 illustrates tradeoffs between the average putamen uptake and the 

background standard deviation for the time frame 26, which is 65–70 min post-injection, 

as well as for the Patlak influx constant images. The conditional DIP denoising with the 

4D branch CNN architecture demonstrated superior performance, exhibiting higher 

putamen uptake values and lower background standard deviation compared to different 

denoising algorithms. 

Figure 3.12 displays the transaxial and sagittal slices of the time frame 6, covering 

120–160 s, time frame 26, covering 3900–4200 s, and non-displaceable binding potential 

BPND images, calculated by different denoising algorithms in the real preclinical dynamic 

11C-raclopride data. 

Figure 3.13 shows the mean BPND values at the putamen ROI. Through both visual 

assessment and quantitative analysis, the conditional DIP with the 4D branch CNN 

architecture is observed to enhance the resolution of dynamic PET images in the time 
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frame 26 and to yield a higher BPND in the non-displaceable binding potential images 

compared to different denoising algorithms. 

Figure 3.14 illustrates the regional TACs for the putamen and cerebellar cortex 

regions treated by different denoising algorithms. The TACs denoised by the proposed 

conditional DIP with the 4D branch CNN architecture exhibit a smoother profile 

compared to those denoised by other algorithms. These findings indicate that the proposed 

conditional DIP with 4D branch CNN architecture is versatile and practical for PET 

tracers that exhibit not only a widespread distribution such as 18F-FDG but also 

concentrated accumulation in brain regions such as 11C-raclopride. 
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Figure 3.10: Preclinical results of (a) the dynamic PET images at time frame 6, (b) the time frame 26, 

and (c) the Patlak influx constant images in 18F-FDG. The columns correspond to the images processed 

by 3D DRAMA, Gaussian filtering, guided filtering, and conditional DIP with 3D U-Net and 4D 

branch CNN architectures (left to right). The figure is reprinted from the work of Hashimoto et al. [80] 

(© 2021 IPEM) 
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Figure 3.11: Tradeoffs between the putamen uptake and background standard deviation for preclinical 

18F-FDG data in (a) the time frame 26, and (b) Patlak influx constant images. The markers 

corresponding to 1.0, 2.0, 3.0, 4.0 and 5.0 mm FWHM for the Gaussian filtering, 0.1, 0.5, 0.75, 1.0 

and 1.5 ε for the guided filtering, 1250, 1000, 750, 500 and 250 epochs for the conditional DIP with 

3D U-Net architecture, and 7000, 5000, 4000, 3000 and 2000 epochs for the conditional DIP with 4D 

branch CNN architecture (upper right to lower left). The images in Figure 3.10 are labeled by filled 

markers. The figure is reprinted from the work of Hashimoto et al. [80] (© 2021 IPEM)  
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Figure 3.12: Preclinical results of (a) the dynamic PET images at the time frame 6, (b) time frame 26, 

and (c) non-displaceable binding potential images in 11C-raclopride. The columns correspond to the 

images processed by the 3D DRAMA, Gaussian filtering, guided filtering, and conditional DIP with 

3D U-Net and 4D branch CNN architectures (left to right). The figure is reprinted from the work of 

Hashimoto et al. [80] (© 2021 IPEM) 
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Figure 3.13: Mean BPND values at the putamen ROI in the 11C-raclopride experiment. 

 

 

Figure 3.14: Regional TACs at (a) the putamen and (b) cerebellar cortex ROIs. The figure is reprinted 

from the work of Hashimoto et al. [80] (© 2021 IPEM)  
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3.5 Discussion 

Various supervised and self-supervised deep learning algorithms for PET image 

denoising have been developed [96-102]. For example, Gong et al. [96] proposed the 

supervised PET image denoising using the perceptual loss based on a pre-trained VGG 

network to enhance PET image quality [103]. Ote et al. [97] investigated the impact of 

four different network architectures on the supervised low-dose PET image denoising. 

However, the quantitative accuracy of the denoised PET images cannot be assured for 

unknown cases not covered in the training datasets, such as unfamiliar diseases, new PET 

tracers, and different human races. Furthermore, these methods require the preparation of 

extensive datasets. Our proposed conditional DIP framework can address these concerns 

as it is an unsupervised deep learning algorithm that relies solely on the subject's own 

data. 

For the results of the computer simulation, the tradeoffs between the mean squared 

bias and variance for the tumor ROIs demonstrated that the proposed conditional DIP 

with the 4D branch CNN architecture can preserve the quantitative accuracy within the 

tumor region while minimizing image noise. This trend is particularly noticeable in earlier 

time frames, such as the time frame 6, compared to the guided filtering and conditional 

DIP with 3D U-Net architecture methods, which utilize the same static PET image 

information as the proposed conditional DIP denoising with the 4D branch CNN 

architecture. These are also evident in the quantitative results of the real preclinical PET 

data. 

The enhanced performance of the proposed conditional DIP denoising with the 4D 

branch CNN architecture is attributed to its end-to-end framework, which includes the 
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feature extractor that facilitates the sharing of common information across different time 

frames. Common information extracted by the feature extractor are transferred to each 

reconstruction branch for reconstructing detailed information of each dynamic PET frame 

to improve the dynamic PET image denoising performance. 

Previous research on conditional DIP for PET image denoising by Cui et al. [76] and 

Hashimoto et al. [79], has indicated that the conditional DIP outperforms other denoising 

algorithms such as the guided nonlocal means filtering [104], block-matching 4D filtering 

[105], and deep decoder denoising [106]. Given these findings, it seems reasonable that 

the proposed conditional DIP denoising with the 4D branch CNN architecture would have 

competitive or better results compared to these denoising algorithms. 

In this chapter, we utilized the static PET image as the network input. The conditional 

DIP denoising is also available to use the X-ray CT or MRI images to enhance PET image 

denoising performance, in line with findings from previous research [76,78,107]. 

In the experiments of the real preclinical PET data, we used the 18F-FDG, which 

showed no significant changes in the distribution of radioactivity between the early and 

later time frames, as well as a reversible-type PET tracer, 11C-raclopride, that exhibits 

dynamic shifts in RIs, particularly in the striatum. The real preclinical data results 

indicated that the conditional DIP denoising with the 4D branch CNN architecture 

delivers greater resolution in the time frame 26 and a higher BPND values in the non-

displaceable binding potential images compared to other denoising algorithms. The 

regional TAC for the putamen with the Gaussian filtering was relatively lower than that 

obtained with the conditional DIP denoising. Moreover, the regional TACs generated by 

the conditional DIP denoising with the 4D branch CNN architecture were smoother than 

those produced by other denoising algorithms. It is important to note that the regional 
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TACs of the cerebellar cortex were not underrepresented due to the comparatively large 

ROI. The results suggest that the conditional DIP denoising is capable of being effectively 

utilized for both nonreversible accumulate radioactive tracers, such as 18F-FDG, and 

reversible radioactive tracers, such as 11C-raclopride, with reduced bias. Consequently, 

we believe that the conditional DIP denoising framework is applicable to a wide array of 

PET tracers.  

In small animal studies, an excessive dose of radioactive tracers might lead to an 

increased receptor occupancy by non-radioactive tracers in neuroreceptor imaging. The 

conditional DIP denoising framework has the potential to lower both the radiation dose 

and the dose of non-radioactive PET tracers, offering a solution to the issue of overdosage. 

The original research by Ulyanov et al. [33,34] indicated that the performance of the 

DIP framework for tasks such as image denoising and inpainting was significantly 

influenced by the network structures. This is because the network structure has an 

intrinsic inductive bias. Our future work will focus on exploring an optimal network 

architecture that provides more robust regularization for PET image denoising.  

A notable limitation of this study is the impact of involuntary patient movements 

during dynamic PET scanning. This real preclinical experiment can ignore the effect of 

movements because the monkey subjects were securely immobilized. However, for actual 

situation for human study, involuntary movements may result in blurred PET images due 

to positional errors across dynamic frames. According to the report by Zhao et al. [108], 

the conditional DIP tolerates certain degrees of misalignment between prior information 

and the target images. As an alternative, we can solve to use motion correction techniques 

[109-111] to mitigate above concern. Future research will explore the influence of patient 

movement on the image quality. 
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Our evaluation was confined to simulated and real preclinical brain PET data. To 

fully assess the effectiveness of the conditional DIP denoising framework, further 

evaluations incorporating other organs, human, and different radioactive tracer datasets 

are essential. 
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4 DIPrecon: PET image reconstruction 

using conditional DIP 

4.1 Introduction 

As explained in Chapter 3, the conditional DIP denoising framework has the potential 

to improve the image quality of PET images. The conditional DIP denoising is a post-

processing method, which is characterized by fast calculations and is easy to implement 

in existing PET scanners. However, there is a risk of accidentally removing important 

image information, such as lesions, along with image noise. 

In this chapter, we introduce an iterative PET image reconstruction incorporating the 

conditional DIP framework, called DIPrecon [112,113]. The DIPrecon incorporates the 

conditional DIP framework into image reconstruction to achieve powerful noise reduction 

while measuring consistency with measured emission data, fundamentally solving the 

above-mentioned challenges of post-processing. The advantage of the proposed 

reconstruction algorithm is that the end-to-end DIPrecon is formulated as a single 

optimization problem by incorporating the forward projection model into the loss 

function of the conditional DIP framework and can reduce the number of hyperparameters 

compared to a hybrid DIPrecon algorithm. We evaluate the proposed algorithm with 

conventional iterative reconstruction algorithms using Monte Carlo simulation data and 

real preclinical data. 
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4.2 Methods 

4.2.1 Proposed end-to-end DIPrecon 

algorithm 

For the proposed end-to-end reconstruction algorithm, the reconstructed PET image 

𝒙 is obtained using the conditional DIP denoising framework as follows, 

𝒙 = 𝑓(𝜃|𝒈), (4.1) 

where 𝑓 is a neural network with trainable parameters 𝜃 which are the representation 

of the reconstructed PET image 𝒙. 𝒈 represents prior information as the network input.  

The PET image can be calculated by minimizing the constrained optimization 

problem using Equation (2.3) as follows, 

min𝐸(𝑨𝒙, 𝒚𝟎)

s. t.  𝒙 = 𝑓(𝜃|𝒈),
(4.2) 

where 𝐸 is the loss function such as the MSE or Poisson negative log likelihood function. 

𝑨 is a system matrix that denotes the probability of each voxel to each LOR, and 𝒚𝟎 is 

the measured projection data. In this study, we substitute the above constraint into the 

objective function to compute reconstructed process in one step as follows, 

𝜃∗ = argmin
𝜃

‖(𝑨𝑓(𝜃|𝒈) − 𝒚𝟎) ⊙𝒎‖ , (4.3) 

𝒙∗ = 𝑓(𝜃∗|𝒈), (4.4) 

where ⊙ represents the Hadamard product, and 𝒎 is the binary mask of the detector 

gaps. The detector gaps are typically filled by an interpolation process in the sinogram 

space. In this study, inspired by the inpainting task of the DIP framework, the loss function 

was computed using only measured data. In addition, we used the MR images as the prior 
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information of the network input.  
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4.2.2 Implementation 

Figure 4.1 illustrates an implementation overview of the proposed end-to-end 

DIPrecon algorithm. For this experiment, we utilized the same 3D U-Net architecture that 

was presented in Figure 2.4, with the only modification being the output convolution layer. 

The output layer consisted of a 1 × 1 × 1 convolution layer with the ReLU activation 

function. We used a rotation-based method to implement the forward projection [114]. 

The proposed end-to-end DIPrecon algorithm performs the following steps. (1) The prior 

information of the MR image is input into the network. (2) The PET image is obtained 

from the network output. (3) The forward projection is calculated to obtain the estimated 

sinogram. (4) The loss is calculated with the measured sinogram and estimated sinogram. 

(5) The network parameters are updated through the back-propagation algorithm. 

The limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm 

[115], a quasi-Newton method which uses an approximation of the inverse Hessian matrix 

(second-order gradient) of the loss function, was utilized in this implementation. The L-

BFGS algorithm is known for its stable convergence and quicker performance compared 

to first-order gradient descent algorithms. Prior research on PET image reconstruction 

and denoising using the conditional DIP [76,78,112] have demonstrated that the L-BFGS 

algorithm offers improved computational time and convergence stability when compared 

to other first-order gradient descent methods, including the SGD, Nesterov’s accelerated 

gradient [116], and Adam [117]. 

We used the learning rate of 0.1. The experiments were conducted on a computer 

using the Ubuntu 18.04 with an NVIDIA Quadro RTX 8000 GPU with 48 GB of memory. 

The network models were implemented using PyTorch 1.7.1 (https://pytorch.org/). 

https://pytorch.org/
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4.3 Experimental setup 

4.3.1 Computer simulation 

We utilized 20 brain phantoms from the BrainWeb database [84,85] and generated 

projection data through Monte Carlo simulation. The radioactivity contrast ratios for gray 

matter, white matter, and cerebrospinal fluid were set to 1:0.25:0.05, reflecting the typical 

distribution of the 18F-FDG. The attenuation coefficients were assigned to 0.00958 mm-1 

for soft tissue and 0.0151 mm-1 for bone, respectively. 

For the experiments, we assumed a brain-dedicated PET scanner [111] as follows: It 

featured a detector ring with a diameter of 486.83 mm, composed of 28 detector units 

circumferentially and four units in the axial direction. Each detector unit housed a 16 × 

16 array of cerium-doped lutetium–yttrium oxyorthosilicate (LYSO) crystals, with each 

crystal measuring 3.14 × 3.14 × 20 mm. The list-mode data of the 3D PET acquisition 

were converted into a 2D PET sinogram format using a single-slice rebinning method, 

with a maximum ring difference set to ± 15. The scatter events were excluded from the 

list-mode data to simplify the simulation. The sinogram and PET image sizes were 128 

angles × 128 bins × 64 slices, and 128 × 128 × 64 voxels with 3.0 × 3.0 × 3.221 mm/voxel. 

The simulated sinogram had approximately 35.9 ± 1.59 million counts for each subject. 

Before the reconstruction, both component-based normalization and attenuation 

correction were performed on the sinogram space. 

In this experiment, PSNR and SSIM were used for quantitative evaluation, as shown 

in Equations (3.7) and (3.8). Additionally, we computed the contrast recovery coefficient 

(CRC) and the background standard deviation (STD) as follows, 
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CRC = (
𝑎̅

𝑏̅
− 1) (

𝑎̅gt

𝑏̅gt
− 1)⁄ , (4.5) 

𝑆𝑇𝐷 =
1

𝑏̅
√
1

𝐾𝑏
∑(𝑏𝑘 − 𝑏̅)

2

𝐾𝑏

𝑘=1

, (4.6) 

where 𝑎̅ =
1

𝐾𝑎
∑ 𝑎𝑘
𝐾𝑎
𝑘=1  and 𝑏̅ represent the mean uptakes of the gray matter and white 

matter (background) over 𝐾𝑎  and 𝐾𝑏  ROIs. 𝑎̅gt  and 𝑏̅gt  represent the ground truth 

uptakes of the gray matter and background regions. We used 30 ROIs for gray matter and 

background, containing only 80% pixels of the gray matter were selected. 
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4.3.2 Real preclinical PET data 

The real preclinical experiments were approved by the Animal Ethical Committee of 

the Central Research Laboratory, Hamamatsu Photonics K.K. (Approval number: HPK-

2017-02). 

We used the same real preclinical 18F-FDG PET data as in subsection 3.3.2. The 

scatter correction was implemented through a convolution subtraction method, and 

attenuation correction was executed by reprojecting the transmission image into 3D 

sinogram space. 

The acquired 3D PET emission data were converted into the 2D sinogram format 

utilizing the Fourier rebinning method. The sinogram and PET image sizes were 256 

angles × 256 bins × 64 slices, and 256 × 256 × 64 voxels with 0.65 × 0.65 × 1.0167 

mm/voxel. A T1-weighted MR image was scanned on a different day and was manually 

registered to PET image by two radiological technologists. 
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4.3.3 Comparison algorithms 

In the experiments, we compared the proposed end-to-end DIPrecon with the FBP 

using the Hanning filter, and MLEM with 100 iterations. These were then performed the 

Gaussian post-filtering of 𝜎 = 1 voxel. Furthermore, we performed the hybrid DIPrecon 

algorithm by Gong et al. [112] for comparison. 

The hybrid DIPrecon algorithm defines the following constrained optimization 

problem, 

max 𝐿(𝒚|𝒙)

s. t.  𝒙 = 𝑓(𝜽|𝒈)
, (4.7) 

where 𝐿  is the Poisson log likelihood function. In the hybrid DIPrecon algorithm, 

Equation (4.7) is transformed into an unconstrained problem using the augmented 

Lagrangian format, and solved it by the alternating direction method of multipliers 

algorithm [118] in three steps as follows, 

𝒙𝑛+1 = argmax
𝒙

𝐿(𝒚|𝒙) −
𝜌

2
‖𝒙 − 𝑓(𝜽𝑛|𝒈) + 𝝁𝑛‖2 , (4.8) 

𝜽𝑛+1 = argmin
𝜽

‖𝑓(𝜽|𝒈) − (𝒙𝑛+1 + 𝝁𝑛)‖2 , (4.9) 

𝝁𝑛+1 = 𝝁𝑛 + 𝒙𝑛+1 − 𝑓(𝜽𝑛+1|𝒈), (4.10) 

where 𝝁 is a scaled dual variable and 𝜌 is a positive constant. We used the same settings 

employed in the original paper by Gong et al. [112]. 
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4.4 Results 

4.4.1 Computer simulation 

Figure 4.2 displays the three orthogonal slices of the reconstructed images and their 

magnified images by different reconstruction algorithms in the computer simulation. The 

proposed end-to-end DIPrecon algorithm using random noise input and MRI input 

obtained accurate PET images with preserving brain structures compared to both the FBP 

and MLEM algorithms. Notably, the proposed end-to-end DIPrecon algorithm with the 

MRI input generated more fine cortex structures than the other reconstruction algorithms. 

In addition, the proposed end-to-end DIPrecon algorithm provided finer edges compared 

to the hybrid DIPrecon algorithm. 

Figure 4.3 illustrates the box plots of the PSNR and SSIM for the various 

reconstruction algorithms. The mean PSNR values for the FBP, MLEM, hybrid DIPrecon, 

and the proposed end-to-end DIPrecon with random noise and MRI input were 14.16, 

14.18, 16.31, 15.40, and 16.31 dB, respectively, and the mean SSIM values were 0.588, 

0.611, 0.786, 0.685, and 0.761, respectively. The PSNRs and SSIMs of the proposed end-

to-end DIPrecon algorithm with MRI input were much higher than the FBP and MLEM 

algorithms. Note that the proposed end-to-end DIP recon algorithm also proved 

comparable to the hybrid DIPrecon algorithm. 

Figure 4.4 illustrates the tradeoffs between the CRC and STD for the gray matter 

region by different reconstruction algorithms. The tradeoff curves demonstrated that the 

proposed end-to-end DIPrecon algorithm achieves the highest CRC and the hybrid 

DIPrecon algorithm provides better noise performance in STD. These quantitative results 

indicated that the proposed end-to-end DIPrecon algorithm provides better or compatible 
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performance compared with the FBP, MLEM, and hybrid DIPrecon algorithms. 

 

 

 

Figure 4.2: Three orthogonal slices of the reconstructed images and their magnified images of the red 

squared regions by different reconstruction algorithms in the computer simulation. The columns 

correspond to the MR images, ground truth, reconstructed images obtained using FBP, and MLEM, 

hybrid DIPrecon, and the proposed end-to-end DIPrecon with random noise and MRI input (left-to-

right). The figure is reprinted from the work of Hashimoto et al. [113] (© 2022 IEEE) 
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Figure 4.3: Quantitative results of the PSNR (top) and SSIM (bottom) for the computer simulation 

with different reconstruction algorithms: the MLEM, hybrid DIPrecon (Hybrid), end-to-end DIPrecon 

with random noise input (End-to-end w/ noise) and with MRI input (End-to-end w/ MRI). The line 

within the box represents the median value, and the upper and lower lines of the box represent the 75th 

and the 25th percentiles, respectively. The upper and lower whiskers represent the maximum and 

minimum values, respectively. The figure is reprinted from the work of Hashimoto et al. [113] (© 

2022 IEEE)  
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Figure 4.4: Tradeoffs between the CRC and STD at the gray matter region for the computer simulation 

with different reconstruction algorithms: the MLEM, hybrid DIPrecon (Hybrid), end-to-end DIPrecon 

with random noise input (End-to-end w/ noise) and with MRI input (End-to-end w/ MRI). Markers 

are plotted every ten iterations from ten to 100 in the MLEM, every iteration from one to ten in the 

hybrid DIPrecon, every three epochs from 18 to 45 in the end-to-end DIPrecon with the random noise 

input, and every epoch from 33 to 42 in the end-to-end DIPrecon with the MRI input. The 

reconstructed images in Figure 4.2 are labeled by filled makers. The figure is reprinted from the work 

of Hashimoto et al. [113] (© 2022 IEEE)  
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4.4.2 Real preclinical PET data 

Figure 4.5 displays the three orthogonal slices of the reconstructed images and their 

magnified images by different reconstruction algorithms in the real preclinical 18F-FDG 

PET data of the conscious rhesus monkey brain. The proposed end-to-end DIPrecon 

algorithm provides high-quality PET images compared with both the FBP and MLEM 

algorithms.  

Figure 4.6 illustrates the tradeoffs between the striatum uptake and STD by different 

reconstruction algorithms. The proposed end-to-end DIPrecon algorithm showed both the 

highest striatum uptake and lowest STD in the other reconstruction algorithms. 

 

 

 

Figure 4.5: Three orthogonal slices of the reconstructed images by different reconstruction algorithms 

in the computer simulation. The columns correspond to the MR images, reconstructed images obtained 

using FBP, MLEM, hybrid DIPrecon, and the end-to-end DIPrecon with MRI input (left-to-right). The 

figure is reprinted from the work of Hashimoto et al. [113] (© 2022 IEEE) 
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Figure 4.6: Tradeoffs between the striatum uptake and STD for real preclinical data with different 

reconstruction algorithms: the MLEM, hybrid DIPrecon (Hybrid), and end-to-end DIPrecon with MRI 

input (End-to-end w/ MRI). Markers are plotted every ten iterations from ten to 100 in MLEM, every 

iteration from one to ten in the hybrid DIPrecon, every three epochs from 9 to 18, and every epoch 

from 21 to 30 in the end-to-end DIPrecon with MRI input. The corresponding reconstructed images 

in Figure 4.5 are labeled by filled markers. The figure is reprinted from the work of Hashimoto et al. 

[113] (© 2022 IEEE)  
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4.5 Discussion 

Similar to PET image denoising, various supervised deep learning algorithms have 

been developed for iterative PET image reconstruction [119-122]. For example, Gong et 

al. proposed a deep learning-based iterative PET image reconstruction algorithm 

incorporating a supervised CNN for image representation [119]. Xie et al. expanded the 

network in the above-mentioned work to generative adversarial networks [120]. 

Mehranian and Reader proposed MAP reconstruction to integrate residual networks by 

using a forward-backward splitting algorithm [121]. However, as mentioned in Chapter 

3, there are still challenges in applying supervised deep learning reconstruction to 

unknown cases not covered in the training datasets, such as unfamiliar diseases, novel 

PET tracers, and different human races. The DIPrecon algorithms have the potential to 

open the doors to apply clinical use without any prior training datasets due to the synergy 

of the conditional DIP and iterative image reconstruction frameworks. 

Our proposed end-to-end DIPrecon algorithm distinguishes itself from other deep 

learning-based PET reconstruction algorithms. Typically, supervised deep learning 

reconstruction requires a substantial number of reconstructed PET images for network 

training. In contrast, the DIPrecon requires only the measured data, attenuation correction 

information and additional prior information such as MR images. This can reduce the 

inductive biases in training datasets, such as artifacts introduced during the existing image 

reconstruction process. 

The computation time for the proposed end-to-end DIPrecon and hybrid DIPrecon 

algorithms were 5.74 seconds and 226.76 seconds per iteration, which demonstrated that 

the proposed end-to-end DIPrecon approximately 8.8 times faster than the hybrid 
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DIPrecon in obtaining well-converged reconstructed images. The hybrid DIPrecon 

algorithm requires three calculation steps as described in (4.8) to (4.10): solving two 

subproblems iteratively and updating the Lagrangian multipliers. On the other hand, the 

proposed end-to-end DIPrecon algorithm transforms the constrained optimization 

problem described in (4.2) into the unconstrained optimization problem described in (4.3), 

and solves it without any penalty parameters in a single step using the neural network 

optimization. Thus, the proposed end-to-end DIPrecon is a more practical and faster 

algorithm for iterative PET image reconstruction without any complicated penalty 

parameter adjustments, unlike the hybrid DIP recon algorithm, which requires parameter 

tuning for the ADMM algorithm. 

The proposed end-to-end DIPrecon algorithm has a drawback with respect to learning 

stability. An unstable behavior was observed during initial iterations because the proposed 

DIPrecon algorithm optimized from randomly initialized network parameters. To mitigate 

this behavior, we can use pre-trained network, the same as the implementation of the 

hybrid DIPrecon algorithm. 

The limitation of this study is that the experiments were only on the simulated brain 

PET data with 18F-FDG contrast and real preclinical brain PET data from a conscious 

rhesus monkey with 18F-FDG. In the future, we plan to evaluate human clinical data, 

different PET scanners, PET tracers and other organs. The effects of the proposed 

DIPrecon algorithm in low-dose PET imaging should also be investigated in the future. 

In addition, we will investigate the impact of the proposed end-to-end DIPrecon algorithm 

on mismatched data between PET and MRI, such as lesions present on the MR images 

and not on the PET images. 

In the experiments, we prepared 2D sinograms using the single-slice rebinning 
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method for the computer simulation and the Fourier rebinning method for the real 

preclinical data. However, most recent PET scanners do not use these methods because 

they inherently lack information on the measurement data, resulting in blurred images. In 

order to utilize all the information in the measurement data, it is necessary to handle fully 

3D PET data. Therefore, we will introduce a practical algorithm for expanding the end-

to-end DIPrecon to fully 3D PET data in the next chapter. 
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5 Expanding DIPrecon to 3D PET 

5.1 Introduction 

In the Chapter 4, we introduced the iterative PET image reconstruction algorithm 

incorporating the conditional DIP framework, called the end-to-end DIPrecon. Although 

the end-to-end DIPrecon provided accurate PET images while measuring consistency 

with measured emission data, it was limited to 2D sinograms. 

The lack of GPU memory is the primary factor that restricts the expanding the end-

to-end DIPrecon to fully 3D PET implementation. In this chapter, to address the challenge, 

we introduce the first attempt to implement an end-to-end DIPrecon algorithm for fully 

3D PET data [123]. We modify the end-to-end DIPrecon algorithm to a block iteration 

and sequential learning of an ordered sequence of block sinograms. In addition, we 

implement the relative difference penalty (RDP) function [124] to the loss function of the 

network to further improve the quantitative accuracy of the reconstructed image. We 

evaluate the proposed 3D end-to-end DIPrecon algorithm with conventional iterative 

reconstruction algorithms using Monte Carlo simulation data and real preclinical data. 
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5.2 Methods 

5.2.1 Block iterative algorithm for fully 

3D PET data 

The end-to-end DIPrecon can reconstruct PET images by minimizing the constrained 

optimization problem shown in (4.2). For 2D PET data, (4.2) can solved by the 

unconstrained problem shown in (4.3) in one step. However, for the fully 3D PET data, 

the optimization in (4.3) cannot be computed on current GPU processors due to its huge 

data volume: the data includes the 3D projection data, network parameters, and network 

input such as MRI data, as well as calculation histories of the 3D forward projection for 

keeping gradients to optimize the network parameters through the back-propagation 

algorithm. In particular, it needs to allocate huge memory space for storing the calculation 

histories of 3D forward projection. 

Inspired by a strategy of the OSEM algorithm which sequentially updates an ordered 

sequence of block sinograms, we apply block iteration-based optimization to (4.3) to 

reduce memory usage of calculation histories of the 3D forward projection for each 

optimization, as follows, 

𝜃∗ = argmin
𝜃

∑‖(𝑨𝑑𝑓(𝜃|𝒈) − 𝒚𝟎
𝑑) ⊙𝒎𝑑‖

𝐷

𝑑=1

, (5.1) 

where 𝐷 and 𝑑 represent the number of ordered subsets of the sinogram and the index 

of the subsets, respectively. 𝑨 is a system matrix that denotes the probability of each 

voxel to each LOR, and 𝑓  is a neural network with trainable parameters 𝜃 . 𝒈 

represents prior information as the network input. 𝒚𝟎 is the measured projection data, 
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⊙ represents the Hadamard product, and 𝒎 is the binary mask of the detector gaps. We 

sampled each subset to equally spaced angles to mitigate geometric correlations between 

subsets. In this implementation, the system matrix 𝑨  stores as a sparse matrix in a 

coordinate list format to reduce memory usage. 

This modification in (5.1) can realize a practical implementation of a fully 3D PET 

image reconstruction. However, it should be noted that the optimization in (4.3) and (5.1) 

cannot strictly converge to the same solutions. This situation is similar to the relationship 

between the MLEM and OSEM algorithms: the OSEM algorithm does not converge to 

the true ML solution and sometimes falls into the limit cycle problem [125,126]. 
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5.2.2 Penalization for DIP optimization 

As described in the Section 2.1.2, the MAP image reconstruction that integrates 

image priors has been used to achieve better image noise and contrast characteristics. In 

practical MAP reconstruction on commercial PET scanners, the RDP [127] has been 

introduced for the image prior [128], as follows, 

𝑅𝐷𝑃(𝒙) =∑ ∑
(𝑥𝑗 − 𝑥𝑘)

2

(𝑥𝑗 + 𝑥𝑘) + 𝛾|𝑥𝑗 − 𝑥𝑘|𝑘∈𝑁𝑗𝑗

, (5.2) 

where 𝑁𝑗 represents a set of neighboring voxels for the 𝑗-th voxel, and 𝛾 is the shape 

of the RDP function. The RDP calculates the differences between neighboring voxels in 

the image domain. The RDP applies more smoothing in (relatively) low-activity regions 

and less smoothing in high-activity regions in the image domain. The MAP reconstruction 

with the RDP serves as a better penalty for PET imaging, achieving better contrast 

recovery and reduced background noise compared to the OSEM algorithm [129]. 

Inspired by MAP reconstruction, we introduce the RDP function into the loss 

function as a penalization of the end-to-end DIPrecon to improve the PET image quality 

and mitigate the overfitting problem in the DIP optimization, as follows, 

𝜃∗ = argmin
𝜃

∑‖(𝑨𝑑𝑓(𝜃|𝒈) − 𝒚𝟎
𝑑) ⊙𝒎𝑑‖

𝐷

𝑑=1

+ 𝛽𝑅𝐷𝑃(𝑓(𝜃|𝒈)), (5.3) 

where 𝛽 is the hyperparameter of the regularization.  
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5.2.3 Implementation 

Figure 5.1 illustrates an implementation overview of the proposed fully 3D end-to-

end DIPrecon algorithm. For the experiments, we used the same 3D U-Net architecture 

that was presented in Figure 4.1.  

The proposed fully 3D end-to-end DIPrecon algorithm performs the following steps. 

(1) The prior information of the MR image is input into the network. (2) The PET image 

is obtained from the network output. (3) The blurred output image is obtained through a 

fixed convolution layer which calculates a shift-invariant blurring model of the PET 

scanner in the image-space domain. Please note that the fixed convolution layer is 

inspired by PSF reconstruction to improve the PET image quality. (4) The forward 

projection is sequentially calculated by the dot product of the blurred output image and 

the block sparse system matrix at each iteration to obtain each estimated block sinogram. 

(5) The loss is calculated with each measured block sinogram and estimated block 

sinogram. (5) The network parameters are sequentially updated in a mini-batch 

optimization manner through the back-propagation algorithm. We used the Siddon 

algorithm to implement 3D forward projection operation [130], and the Gaussian kernel 

with 𝜎 = 0.5 voxels was used for the kernel of the fixed convolution layer. 

In the experiments, we used the stochastic L-BFGS algorithm [131] that extended to 

a mini-batch optimization. The experiments were conducted on a computer using the 

Ubuntu 20.04 with an NVIDIA A100 GPU with 80 GB of memory. The network models 

were implemented using PyTorch 1.12.1 (https://pytorch.org/). 
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5.3 Experimental setup 

5.3.1 Computer simulation 

We utilized 20 brain phantoms from the BrainWeb database [84,85] and generated 

projection data through Monte Carlo simulation. The radioactivity contrast ratios for gray 

matter, white matter, and cerebrospinal fluid were set to 1:0.25:0.05, reflecting the typical 

distribution of the 18F-FDG. The attenuation coefficients were assigned to 0.00958 mm-1 

for soft tissue and 0.0151 mm-1 for bone, respectively. In addition, three spherical tumors 

of 21, 15, and 12 mm diameters with contrasts of 1.1, 1.2, and 1.5 were inserted into white 

matter area, which cannot be identified on the MR image. 

For the experiment, we assumed the same brain-dedicated PET scanner [111] as 

described in the Subsection 4.3.1. We excluded a positron range, angular deviation, and 

random events in the experiment. The scatter events were also excluded from the list-

mode data to simplify the simulation. The 3D PET sinogram was created from the 

simulated list-mode data using nearest neighbor interpolation with the ring difference 

binned with a span of seven. 

The sinogram and PET image sizes were 128 angles × 128 bins × 64 slices × 19 

oblique angles, and 128 × 128 × 64 voxels with 3.0 × 3.0 × 3.221 mm/voxel. The 

simulated sinogram had 2,921,540 counts. Before the reconstruction, both component-

based normalization and attenuation correction were performed on the sinogram space. 

For the quantitative evaluation, the PSNR and SSIM were used as shown in 

Equations (3.7) and (3.8). Additionally, we computed the CRC in (4.5) and the 

background STD in (4.6).  
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5.3.2 Real preclinical PET data 

The real preclinical experiments were approved by the Animal Ethical Committee of 

the Central Research Laboratory, Hamamatsu Photonics K.K. (Approval number: HPK-

2017-02). 

We used the same real preclinical 18F-FDG PET data as in the Subsections 3.3.2 and 

4.3.2. The scatter correction was implemented through a convolution subtraction method, 

and attenuation correction was executed by reprojecting the transmission image into 3D 

sinogram space. Random correction was performed by subtracting delayed coincidence. 

The low-dose PET data were simulated by periodic 1/20 downsampling of the 

measured list-mode emission data. The sinogram and PET image sizes were 128 angles 

× 128 bins × 64 slices × 19 oblique angles, and 128 × 128 × 64 voxels with 0.65 × 0.65 

× 1.0167 mm/voxel. A T1-weighted MR image was scanned on a different day and was 

manually registered to PET image by two radiological technologists, as in the Subsection 

4.3.2. 
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5.3.3 Comparison algorithms 

In the experiments, we compared the proposed fully 3D end-to-end DIPrecon 

algorithm with the MLEM, MAPEM with the RDP function [124], and hybrid DIPrecon 

algorithms [112]. It should be noted that the image-space PSF reconstruction were used 

in these comparison algorithms for fair comparison.  

We used 100 iterations for the MLEM and MAPEM algorithms, and 200 main 

iterations with two sub-iterations for the EM reconstruction and ten sub-iterations for the 

DIP optimization were used for the hybrid DIPrecon algorithm, which are the same 

settings for the hybrid DIPrecon algorithm as employed in the original paper [112]. 
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5.4 Results 

5.4.1 Computer simulation 

Figure 5.2 displays the reconstructed results for the simulated data using different 

regularization parameters, and Figure 5.3 demonstrates the impact of the regularization 

parameter on the proposed fully 3D DIPrecon algorithm with two subsets. We achieved 

more detailed brain structures and more stable optimization with the regularization 

parameter of 5 × 10-9. Therefore, we selected this value in the experiments. 

Figure 5.4 presents the reconstructed results for the simulated data using different 

algorithms. The simulation results indicated that the proposed fully 3D end-to-end 

DIPrecon with the RDP enhanced the PET image quality by reducing the statistical noise 

and maintaining the brain structures and the inserted tumor contrast. The visual results 

are supported by the highest PSNR achieved with the proposed fully 3D end-to-end 

DIPrecon algorithm. 

Figure 5.5 illustrates the tradeoffs between the tumor CRC and STD for different 

reconstruction algorithms. The trade-off curves are averaged over ten independent and 

identically distributed samples from the same digital brain phantom. The tradeoff curves 

demonstrate that the proposed end-to-end DIPrecon algorithm achieves competitive 

results with the hybrid DIPrecon algorithm in the CRC and the STD. 

Figure 5.6 illustrates the influence of the RDP term on the PSNR for the proposed 

end-to-end DIPrecon algorithm. The RDP term into the loss function of the proposed 

algorithm significantly enhanced the reconstruction performance compared to that of the 

algorithm without the RDP. Additionally, the RDP term did not compromise the 

quantitative performance, even with an increased number of iterations. 
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We assessed the uncertainty and variability of the proposed DIPrecon algorithm by 

using ten independent and identically distributed samples from the same digital brain 

phantom. Figure 5.7 presents the voxel-wise mean and standard deviation images. We 

found that the variability of the proposed DIPrecon algorithm was less than or equal to 

that of the other algorithms. Figure 5.8 shows the PSNR results of ten independent and 

identically distributed simulation samples, which achieved the highest values for the 

proposed end-to-end DIPrecon algorithm with RDP. 

Figure 5.9 represents the reconstructed results of the simulation data using different 

numbers of subsets, and Figure 5.10 demonstrates the impact of the numbers of subsets 

on the PSNR. It is important to note that the end-to-end DIPrecon algorithm is not feasible 

even on current best GPU boards such as NVIDIA A100 with 80GB memory, unless the 

number of subsets is greater than two due to the limitations of GPU memory. Similar 

curves were observed across these subsets, suggesting that the proposed block iteration 

algorithm effectively yielded high-quality images without any training dataset. 

 

 

 

Figure 5.2: Reconstructed results of the human brain 18F-FDG computer simulation with different 

regularization parameters 𝜷 with two subsets. The figure is reprinted from the work of Hashimoto et 

al. [123] (© 2023 IPEM) 
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Figure 5.3: Impact of the settings of the regularization parameter 𝜷 setting with two subsets, in the 

PSNR for the proposed fully 3D end-to-end DIPrecon algorithm. The figure is reprinted from the work 

of Hashimoto et al. [123] (© 2023 IPEM) 

 

 

 

 

Figure 5.4: Transaxial and coronal slices of the reconstructed images and their magnified images of 

the red squared regions by different reconstruction algorithms in the computer simulation. The 

columns correspond to the MR images, ground truth, reconstructed images obtained using the MLEM, 

MAPEM, hybrid DIPrecon, and the proposed end-to-end DIPrecon without RDP (Proposed w/o RDP) 

and with RDP (Proposed w/ RDP) (left-to-right). The PSNR values for each algorithm are provided 

below the name of the algorithm. The figure is reprinted from the work of Hashimoto et al. [123] (© 

2023 IPEM) 
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Figure 5.5: Mean tradeoffs between the tumor CRC and STD for the human brain 18F-FDG computer 

simulation. Markers are plotted every ten iterations from one to 100 in the MLEM and MAPEM 

algorithms, every ten iterations from one to 200 in the hybrid DIPRecon algorithm, every two epochs 

from 1 to 20 in the proposed algorithm without RDP (Proposed w/o RDP), and every three epochs 

from 1 to 50 in the proposed algorithm with RDP (Proposed w/ RDP). The figure is reprinted from the 

work of Hashimoto et al. [123] (© 2023 IPEM) 

 

 

 

Figure 5.6: Impact of the RDP term on the PSNR for the proposed fully 3D end-to-end DIPrecon 

algorithm. The figure is reprinted from the work of Hashimoto et al. [123] (© 2023 IPEM) 
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Figure 5.7: Mean and standard deviation PET images of ten independent and identically distributed 

samples from the same digital brain phantom for different reconstruction algorithms. From left to right, 

the MAPEM with the RDP, hybrid DIPrecon, proposed end-to-end DIPrecon without RDP (Proposed 

w/o RDP), and proposed end-to-end DIPrecon with RDP (Proposed w/RDP). The figure is reprinted 

from the work of Hashimoto et al. [123] (© 2023 IPEM) 

 

 

 

 

Figure 5.8: Quantitative results of ten independent and identically distributed samples from the same 

digital brain phantom for different reconstruction algorithms. From left to right, the MAPEM with the 

RDP, hybrid DIPrecon, proposed end-to-end DIPrecon without RDP (Proposed w/o RDP), and 

proposed end-to-end DIPrecon with RDP (Proposed w/RDP). The figure is reprinted from the work 

of Hashimoto et al. [123] (© 2023 IPEM) 
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Figure 5.9: Reconstructed results of the human brain computer simulation with 18F-FDG contrast for 

different number of subsets. The figure is reprinted from the work of Hashimoto et al. [123] (© 2023 

IPEM) 

 

 

 

 

Figure 5.10: Impact of the number of subsets in terms of the PSNR for the proposed fully 3D end-to-

end DIPrecon algorithm. The figure is reprinted from the work of Hashimoto et al. [123] (© 2023 

IPEM) 
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5.4.2 Real preclinical PET data 

Figure 5.11 represents the reconstructed results with subsets 2 for the low-dose real 

preclinical PET data using different algorithms. The proposed end-to-end DIPrecon 

algorithm with the RDP achieved the highest PSNR and offered more fine representations 

of putamen structures in low-dose PET imaging, compared with the other reconstruction 

algorithms. 

Figure 5.12 displays the line profiles through the putamen regions using different 

algorithms, with the best recovery of the putamen uptake being observed for the proposed 

algorithm with the RDP. These results suggested that the proposed fully 3D end-to-end 

DIPrecon algorithm offers more precise quantitative reconstruction for low-dose PET 

imaging. 

 

 

Figure 5.11: Reconstruction results of the reconstructed images and their magnified images of the red 

squared regions by different reconstruction algorithms for the real preclinical low-dose 18F-FDG PET 

data. The columns correspond to the MR images, reconstructed images obtained using the MLEM 

with full count data and low-dose data, MAPEM, hybrid DIPrecon, and the proposed end-to-end 

DIPrecon with RDP (Proposed w/ RDP) (left-to-right). The PSNR values for each algorithm are 

provided below the name of the algorithm. The figure is reprinted from the work of Hashimoto et al. 

[123] (© 2023 IPEM) 
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Figure 5.12: Line profiles for the real preclinical low-dose 18F-FDG PET data by different 

reconstruction algorithms. The profile line is represented in the upper left. Triangular arrows indicate 

the putamen areas. The figure is reprinted from the work of Hashimoto et al. [123] (© 2023 IPEM) 
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5.5 Discussion 

In this Chapter, we introduced a practical implementation of a fully 3D PET image 

reconstruction using the DIP framework in an end-to-end manner. The proposed fully 3D 

end-to-end DIPrecon algorithm incorporated a 3D forward projection model into a loss 

function, and we modified the loss function to block iteration and sequential learning of 

an ordered sequence of block sinograms. Additionally, we integrated the RDP term in the 

loss function to improve the PET image quality and suppress the overfitting problem of 

the DIP optimization. 

As shown in Figure 5.2 and Figure 5.3, the hyperparameter of the regularization 𝛽 

significantly influenced the smoothness of the reconstructed PET images. The results 

showed that 𝛽  is an important hyperparameter that can adjust the contrast and noise 

characteristics. It should be noted that the scaling of 𝛽 is substantially different from that 

used in the MAPEM [127], which is the original work in the RDP function. This is 

because the MSE was employed as the loss function in the proposed algorithm, whereas 

the MAPEM utilizes the negative log-likelihood as the objective function.  

The proposed end-to-end DIPrecon algorithm demonstrated comparable 

performance to the hybrid DIPrecon algorithm, which is the same conditions as the 

proposed algorithm, as shown in Figure 5.5: it is consistent with the results for 2D PET 

data in Chapter 4. The proposed end-to-end DIPrecon algorithm with the RDP achieved 

superior PET image quality by suppressing image noise while preserving the brain 

structures and inserted tumors than the hybrid DIPrecon algorithm. It would be interesting 

to investigate the impacts of the different contrast PET tracers and tumors in the future, 

as the results were based on the largest inserted tumor. 
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The RDP term significantly enhanced the PET image quality, resulting in a stable 

optimization, as shown in Figure 5.6, where the graph exhibits a plateau at the highest 

PSNRs. The results showed that incorporating the RDP term into the loss function 

suppresses the overfitting problem of the DIP optimization and can eliminate the early 

stopping in the DIP framework. Therefore, strict monitoring of the optimization process 

is not required for the proposed end-to-end DIPrecon algorithm with the RDP. 

The variability of the proposed algorithm with RDP is lower than or comparable to 

that of other reconstruction algorithms, as shown in the standard deviation images in 

Figure 5.7. In addition, neither the Hybrid DIPrecon algorithm nor the proposed end-to-

end DIPrecon algorithm increased the variability around the inserted tumors. This result 

means that the proposed algorithm is stable in processing even when tumors cannot be 

identified on the MR image. The mean image of the proposed DIPrecon algorithm in 

Figure 5.7 obtained smooth white matter areas, suggesting that the heterogeneity in these 

areas in Figure 5.4 could be attributed to statistical variations. 

In the real preclinical experiment, the proposed end-to-end DIPrecon algorithm with 

the RDP achieved superior performance compared to the other reconstruction algorithms 

in the PSNR. Additionally, the proposed DIPrecon algorithm successfully restored the 

putamen uptake and structures even when the 1/20 low-count PET data were used. In 

contrast, the hybrid DIPrecon algorithm did not restore the uptake and structures. These 

preclinical results demonstrated that the proposed DIPrecon algorithm has the potential 

to be used not only for the simulation data but also for real low-dose PET imaging. 

However, there were regions of insufficient recovery at tissue boundaries with the 

proposed DIPrecon algorithm, which is a future issue. 

A block iterative algorithm is critical to practically implementing our fully 3D end-
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to-end DIPrecon algorithm. The original DIP framework generally does not use a mini-

batch training manner because it optimizes for a single target image [33,34]. On the other 

hand, we introduced a block iterative algorithm that implemented an ordered sequence of 

block sinograms, such as the OSEM algorithm, in a mini-batch training manner. The end-

to-end fully 3D DIPrecon implementation does not even compute on current best GPU 

boards without the block iteration algorithm due to the limitations of the GPU memory. 

The proposed DIPrecon algorithm can reduce the GPU memory usage by increasing the 

number of subsets. For instance, the histories of the 3D forward projection, which 

consumed most of the GPU memory, can be reduced by a factor of 4 with 4 subsets. The 

experimental results shown in Figure 5.10 demonstrated that the number of subsets does 

not significantly affect the image quality in PSNR, suggesting that the proposed end-to-

end DIPrecon algorithm is a practical and straightforward solution even for middle-range 

GPU boards. 

In general, the optimization of the deep learning tends to converge on slightly 

different solutions depending on the size of the mini-batch [132]. For example, relatively 

small batches tend to converge to a flat minimum, while large batches tend to converge 

to a sharp minimum. Similar phenomena may occur with the proposed DIPrecon 

algorithm because the proposed algorithm implements block iteration in a mini-batch 

optimization manner. This suggests that the number of subsets influences the network 

convergence of the proposed DIPrecon algorithm, leading to variations in network 

parameters and PET images across different subsets. However, the impact of these 

phenomena on the PET image quality and characteristics remains unclear. 

The proposed end-to-end DIPrecon algorithm computes the trainable parameters of 

the neural network in a one-step optimization using only deep learning frameworks. This 



Expanding DIPrecon to 3D PET | 99  

 

 

implementation differs from the hybrid DIPrecon algorithm, which optimizes two 

separate sub-problems, including the EM reconstruction and DIP optimization processes. 

Consequently, the proposed end-to-end DIPrecon algorithm is free from the settings of 

multiple hyperparameters: it requires only three hyperparameters of the number of 

iterations and subsets, as well as the learning rate. On the other hand, the hybrid DIPrecon 

algorithm requires five hyperparameters of the number of main iterations, two sets of sub-

iterations, the regularization parameter, and the learning rate. In addition, the PET image 

quality can be easily adjusted with only one regularization parameter 𝛽, when the RDP 

term is used in the proposed DIPrecon algorithm. Thus, we concluded that the proposed 

DIPrecon algorithm is easy and straightforward implementation for fully 3D end-to-end 

PET image reconstruction. 

The proposed DIPrecon algorithm employed the MR image as a network input to 

improve the PET image quality, drawing from previous studies that also used the 

conditional DIP framework[76-78,112,113]. Chapter 4 highlighted that the DIPrecon with 

random noise input had worse noise characteristics compared to the MR image input. 

Therefore, it is important to note that there is a potential degradation in noise 

characteristics with random noise input in the proposed DIPrecon algorithm. 

The majority of deep learning-based PET image reconstruction algorithms are data-

driven, utilizing trained neural networks that learn from large training datasets consisting 

of high- and low-quality PET images. The DIPrecon algorithms are not limited by the 

quality of training datasets because it does not face performance restrictions related to 

domain adaptation capabilities, such as variations in PET tracers, scanners, organs, and 

diseases. In addition, there is no theoretical upper limit to the quality of images that can 

be enhanced using this algorithm because of the absence of the above restrictions. Thus, 
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the proposed DIPrecon algorithm can enhance the performance of low-dose PET image 

reconstruction as well as can extend the capabilities of achieving high-quality PET image 

reconstruction beyond the current baselines. 

The limitation of the study was the stability of the network training as the number of 

subsets increased, possibly due to the complexity of network optimization with randomly 

initialized parameters. The implementation of a pre-trained network, as recommended by 

Cui et al. [133] and Onishi et al. [134], might stabilize the network training. 

Data corrections such as attenuation and scatter corrections are critical to the success 

of the end-to-end reconstruction framework. In the current implementation, we perform 

data corrections on the sinogram space prior to the reconstruction. In the future, a 

seamless integration of these corrections is needed. 

Another area for improvement is its intensive computational cost. The current 

processing time requires approximately 13 minutes per epoch, positioning it as 

considerably more resource-intensive than other supervised reconstruction algorithms. 

Therefore, we need to develop a more practical algorithm for accelerating the processing 

time in clinical setting. We are currently working on accelerating the DIPrecon algorithm 

using a two-step optimization method [135]. 

The experiments of this study were limited to the Monte Carlo simulations of the 

human brain 18F-FDG PET data and the real preclinical monley brain 18F-FDG PET data. 

Future research will expand to include clinical trials with various PET tracers, scanners, 

organs, and diseases. 
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6 Conclusion 

In this thesis, we aimed at improving PET image quality in the frameworks of the 

PET image denoising and reconstruction, using the conditional DIP. First, we described 

the basic principles of the PET imaging, image reconstruction, and deep learning. Then, 

we introduced the conditional DIP framework for PET image denoising and expanded it 

to 4D dynamic PET imaging. We proposed the iterative PET image reconstruction 

incorporating the conditional DIP framework, called DIPrecon. Finally, we developed the 

DIPrecon for fully 3D PET data. 

Chapter 3 first introduced the conditional DIP framework for PET image denoising, 

which does not require a prior training dataset, and then expanded the conditional DIP 

framework to 4D dynamic PET imaging. We evaluated the denoising performance of 

dynamic PET imaging using computer simulation and real preclinical data scanned by the 

animal PET scanner. The proposed conditional DIP denoising algorithm showed superior 

performance both visually and quantitatively in computer simulation and real data 

experiments compared with other denoising algorithms. 

Chapter 4 proposed the iterative PET image reconstruction incorporating the 

conditional DIP framework, called DIPrecon. The DIPrecon incorporated the conditional 

DIP framework into iterative image reconstruction to achieve powerful noise reduction 

while measuring consistency with measured emission data, fundamentally solving the 

challenges of post-processing. We evaluated the proposed DIPrecon with conventional 

iterative reconstruction algorithms using Monte Carlo simulation data and real preclinical 

data. The proposed end-to-end DIPrecon algorithm showed superior performance in 

computer simulation and real preclinical data compared to other conventional 
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reconstruction algorithms. Furthermore, the proposed algorithm also demonstrated 

comparable performance and faster calculation time compared to the hybrid DIPrecon 

algorithm. 

Chapter 5 expanded the DIPrecon to fully 3D PET data. We modified the end-to-end 

DIPrecon algorithm to a block iteration and sequential learning of an ordered sequence 

of block sinograms. In addition, we implemented the RDP function to the loss function 

of the network to further improve the quantitative accuracy of the PET image. We 

evaluated the proposed fully 3D end-to-end DIPrecon with conventional iterative 

reconstruction algorithms using Monte Carlo simulation data and real preclinical data and 

can produce high-quality images in computer simulation and real preclinical data. 

In actual clinical situations, high-speed calculations that do not interfere with daily 

operations are required. The main advantages of the proposed conditional DIP denoising 

introduced in Chapter 3 are its fast computation time and easy implementation, which can 

potentially solve the above challenges. However, there is a risk of accidentally removing 

important image information, such as lesions, along with noise because the conditional 

DIP denoising is a post-processing method. The DIPrecon introduced in Chapter 4 can 

solve their challenges because this optimization is performed while measuring 

consistency with measurement data. As introduced in Chapter 5, we can push the 

DIPrecon algorithm to practical reconstruction by expanding it to fully 3D PET data. 

 



| 103  

 

 

Reference 

1 M. E. Phelps, “PET: molecular imaging and its biological applications,” New York: 

Springer; 2012. doi: 10.1007/978-0-387-22529-6 

2 R. E. Carson, “Tracer Kinetic Modeling,” in Positron Emission Tomography, 

London: Springer, 2005. doi: 10.1007/1-84628-007-9_6 

3 H. Schoder, and M. Gonen, “Screening for cancer with PET and PET/CT: potential 

and limitations,” Journal of Nuclear Medicine, vol. 48, suppl 1, pp. 4S-18S, 2007. 

4 R. Minamimoto, M. Senda, K. Uno, S. Jinnouchi, T. Iinuma, et al., “Performance 

profile of FDG-PET and PET/CT for cancer screening on the basis of a Japanese 

Nationwide Survey,” Annals of Nuclear Medicine, vol. 21, no. 9, pp 481-498, 2007. 

5 L. Zhu, K. Ploessl, and H. F. Kung, “PET/SPECT imaging agents for 

neurodegenerative diseases,” Chemical Society Reviews, vol. 43, no. 19, pp. 6683-

6691, 2014. 

6 H. Barthel, M. L. Schroeter, K. T. Hoffmann, and O. Sabri, “PET/MR in dementia 

and other neurodegenerative diseases,” Seminars in Nuclear Medicine, vol. 45, no. 

3, pp. 224-233, 2015. 

7 T. Jones, and E. A. Rabiner, “The development, past achievements, and future 

directions of brain PET,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, 

no. 7, pp. 1426-1454, 2012. 

8 A. R. De Pierro, “A modified expectation maximization algorithm for penalized 

likelihood estimation in emission tomography,” IEEE Transactions on Medical 

Imaging, vol. 14, no. 1, pp. 132-137, 1995. 

9 M. A. Lodge, M. A. Chaudhry, and R. L. Wahl, “Noise Considerations for PET 

Quantification Using Maximum and Peak Standardized Uptake Value,” Journal of 

Nuclear Medicine, vol. 53, no. 7, pp. 1041-1047, 2012. 

10 G. Akamatsu, Y. Ikari, H. Nishida, T. Nishio, A. Ohnishi, et al., “Influence of 

Statistical Fluctuation on Reproducibility and Accuracy of SUVmax and SUVpeak: A 

Phantom Study,” Journal of Nuclear Medicine Technology, vol. 43, no. 3, pp. 222-

226, 2015. 

11 O. Delcroix, D. Bourhis, N. Keromnes, P. Robin, P. Y. Le Roux, et al., “Assessment 

of Image Quality and Lesion Detectability With Digital PET/CT System,” Frontiers 

in Medicine, vol. 8, 629096, 2021. 

12 National Research Council (2006) Health risks from exposure to low levels of 



Reference | 104  

 

 

ionizing radiation: BEIR VII phase 2. The National Academies Press, Washington, 

DC. Available: https://doi.org/10.17226/11340 

13 D. W. Townsend, R. A. Isoardi, and B. Bendriem, “Volume Imaging Tomographs,” 

in The Theory and Practice of 3D PET, Dordrecht: Springer, 1998. 

14 T. Inubushi, M. Ito, Y. Mori, M. Futatsubashi, K. Sato, et al., “Neural correlates of 

head restraint: Unsolicited neuronal activation and dopamine release,” Neuroimage, 

vol. 224, 117434, 2021. 

15 R. Ota, “Photon counting detectors and their applications ranging from particle 

physics experiments to environmental radiation monitoring and medical imaging,” 

Radiological Physics and Technology, vol. 14. No. 2, pp. 134-148, 2021. 

16 S. Vandenberghe, E. Mikhaylova, E. D’Hoe, P. Mollet, and J. S. Karp, “Recent 

developments in time-of-flight PET,” EJNMMI Physics, vol. 3, 3, 2016. 

17 S. R. Cherry, T. Jones, J. S. Karp, J. Qi, W. W. Moses, and R. D. Badawi, “Total-

Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical 

Research and Patient Care,” Journal of Nuclear Medicine, vol. 59, no. 1, pp. 3-12, 

2018. 

18 H. Tashima, and T. Yamaya, “Proposed helmet PET geometries with add-on detectors 

for high sensitivity brain imaging,” Physics in Medicine and Biology, vol. 61, no. 19, 

7205, 2016. 

19 K. Gong, S. Majewski, P. E. Kinahan, R. L. Harrison, B. F. Elston, et al., “Designing 

a compact high performance brain PET scanner—simulation study,” Physics in 

Medicine and Biology, vol. 61, no. 10, 3681, 2016. 

20 G. Akamatsu, M. Takahashi, H. Tashima, Y. Iwao, E. Yoshida, et al., “Designing a 

compact high performance brain PET scanner—simulation study,” Physics in 

Medicine and Biology, vol. 67, no. 22, 225011, 2022. 

21 A. J. Reader, G. Corda, A. Mehranian, C. da Costa-Luis, S. Ellis, and J. A. Schnabel, 

“Deep Learning for PET Image Reconstruction,” IEEE Transactions on Radiation 

and Plasma Medical Sciences, vol. 5, no. 1, pp. 1-25, 2021. 

22 F. Hashimoto, Y. Onishi, K. Ote, H. Tashima, A. J. Reader, and T. Yamaya, “Deep 

learning-based PET image denoising and reconstruction: a review,” Radiological 

Physics and Technology, vol. 17, no. 1, pp. 24-46, 2024. 

23 A. Bousse, V. S. S. Kandarpa, K. Shi, K. Gong, J. S. Lee, et al., “A Review on Low-

Dose Emission Tomography Post-Reconstruction Denoising with Neural Network 

Approaches,” IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 8, 

https://doi.org/10.17226/11340


Reference | 105  

 

 

no. 4, pp. 333-347, 2024. 

24 F. Hashimoto, H. Ohba, K. Ote, and H. Tsukada, “Denoising of Dynamic Sinogram 

by Image Guided Filtering for Positron Emission Tomography,” IEEE Transactions 

on Radiation and Plasma Medical Sciences, vol. 2, no. 6, pp. 541-548, 2018. 

25 J. Dutta, R. M. Leahy, and Q. Li, “Non-local means denoising of dynamic PET 

images,” PLoS ONE, vol. 8, no. 12, e81390, 2013. 

26 H. Arabi, and H. Zaidi, “Non-local mean denoising using multiple PET 

reconstructions,” Annals of Nuclear Medicine, vol. 35, no., pp. 176-186, 2021. 

27 K. Ote, F. Hashimoto, A. Kakimoto, T. Isobe, T. Inubushi, et al., “Kinetics-Induced 

Block Matching and 5-D Transform Domain Filtering for Dynamic PET Image 

Denoising,” IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 4, 

no. 6, pp. 720-728, 2020. 

28 T. Hebert, and R. Leahy, “A generalized EM algorithm for 3-D Bayesian 

reconstruction from Poisson data using Gibbs priors,” IEEE Transactions on Medical 

Imaging, vol. 8, no. 2, pp. 194-202, 1989. 

29 C. Comtat, P. E. Kinahan, J. A. Fessler, T. Beyer, D. W. Townsend, M. Defrise, and 

C. Michel, “Clinically feasible reconstruction of 3D whole-body PET/CT data using 

blurred anatomical labels,” Physics in Medicine and Biology, vol. 47, no. 1, pp. 1-20, 

2001. 

30 J. Tang, and A. Rahmim, “Bayesian PET image reconstruction incorporating anato-

functional joint entropy,” Physics in Medicine and Biology, vol. no. 23, 7063, 2009. 

31 Y. LeCun, Y. Bengio, and G. Hinton G, “Deep learning,” Nature, vol. 521, no. 7553, 

pp. 436-44, 2015. 

32 J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, 

vol. 61, pp. 85-117, 2015. 

33 D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep Image Prior,” in 2018 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 

2018, pp. 9446-9454, doi: 10.1109/CVPR.2018.00984. 

34 D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” International 

Journal of Computer Vision, vol. 128, no. 7, pp. 1867-88, 2020. 

35 J. Pacák, Z. Točík, and M. Černý, “Synthesis of 2-deoxy-2-fluoro-D-glucose,” 

Journal of the Chemical Society D: Chemical Communications, no. 2, p. 77, 1969. 

36 P. Som, H. L. Atkins, D. Bandoypadhyay, J. S. Fowler, R. R. MacGregor, et al., “A 

fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for 



Reference | 106  

 

 

rapid tumor detection,” Journal of Nuclear Medicine, vol. 21, no. 7, pp. 670-675, 

1980. 

37 G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, et al., “Progress 

and promise of FDG-PET imaging for cancer patient management and oncologic 

drug development,” Clinical Cancer Research, vol. 11, no. 8, pp. 2785-2808, 2005. 

38 G. N. Ramachandran, and A. V. Lakshminarayanan, “Three-dimensional 

reconstruction from radiographs and electron micrographs: Application of 

convolutions instead of Fourier transforms,” Proceedings of the National Academy 

of Sciences, vol. 68, no. 9, pp. 2236-2240, 1971. 

39 L. A. Shepp, and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE 

Transactions on Nuclear Science, vol. 21, no. 3, pp. 21-43, pp. 21-43, 1974. 

40 E. Tanaka, and T. Iinuma, “Correction functions for optimizing the reconstructed 

image in transverse section scan,” Physics in Medicine and Biology, vol. 20, no. 3, 

pp. 789-798, 1975. 

41 M. Defrise, and P. E. Kinahan, “Data acquisition and image reconstruction for 3D 

PET,” in The Theory and Practice of 3D PET, Dordrecht: Springer, 1998. 

42 J. Radon J, “On the determination of functions from their integral values along 

certain manifolds,” IEEE Transactions on Medical Imaging, vol. 5, no. 4, pp. 170-

176, 1986. 

43 Y. Tsutsui, S. Awamoto, K. Himuro, Y. Umezu, S. Baba, and M. Sasaki, 

“Characteristics of smoothing filters to achieve the guideline recommended positron 

emission tomography image without harmonization.” Asia Oceania Journal of 

Nuclear Medicine and Biology, vol. 6, no. 1, pp. 15-23, 2018. 

44 L. A. Shepp, and Y. Varidi, “Maximum likelihood reconstruction for emission 

tomography,” IEEE Transactions on Medical Imaging, vol. 1., no. 2, pp. 113-122, 

1982. 

45 K. Lange, and R. Carson, “EM reconstruction algorithm for emission and 

transmission tomography,” Journal of Computer Assisted Tomography,” vol. 8, no. 

2, pp. 306-316, 1984. 

46 Y. Vardi, L. A. Shepp, and L. Kaufuman, “A statistical model for positron emission 

tomography,” Journal of the American Statistical Association, vol. 80, no. 389, pp. 

8-20, 1985. 

47 J. Qi, and R. M. Leahy, “Iterative reconstruction techniques in emission computed 

tomography,” Physics in Medicine and Biology, vol. 51, no. 15, pp. R541-R578, 2006. 



Reference | 107  

 

 

48 H. M. Hudson, and R. S. Larkin, “Accelerated image reconstruction using ordered 

subsets of projection data,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, 

pp. 601-609, 1994. 

49 J. Browne, and A. B. de Pierro, “A row-action alternative to the EM algorithm for 

maximizing likelihood in emission tomography,” IEEE Transactions on Medical 

Imaging, vol. 15, no.5, pp. 687-699, 1996. 

50 E. Tanaka, and H. Kudo, “Subset-dependent relaxation in block-iterative algorithm 

for image reconstruction in emission tomography,” Physics in Medicine and Biology, 

vol. 48, no. 10, pp. 1405-1422, 2003. 

51 J. Qi, R. M. Leahy, S. R. Cherry, A. Chatziioannou, and T. H. Farquhar, “High-

resolution 3D Bayesian image reconstruction using the microPET small-animal 

scanner,” Physics in Medicine and Biology, vol. 43, no. 4, pp. 1001-1013, 1998. 

52 A. J. Reade, S. Ally, F. Bakatselos, R. Manavaki, R. J. Walledge, et al., “One-pass 

list-mode EM algorithm for high-resolution 3-D PET image reconstruction into large 

arrays,” IEEE Transactions on Nuclear Science, vol. 49, no. 3, pp. 693-699, 2002. 

53 T. Yamaya, N. Hagiwara, T. Obi, M. Yamaguchi, N. Ohyama, et al., “Transaxial 

system models for jPET-D4 image reconstruction,” Physics in Medicine and Biology, 

vol. 50, no. 22, pp. 5339-5355, 2005. 

54 V. Y. Panin, F. Kehren, C. Michel, and M. Casey, “Fully 3-D PET reconstruction with 

system matrix derived from point source measurements,” IEEE Transactions on 

Medical Imaging, vol. 25, no. 7, pp. 907-921, 2006. 

55 D. L. Snyder, M. I. Miller, and D. G. Politte, “Noise and edge artifacts in maximum-

likelihood reconstructions for emission tomography,” IEEE Transactions on Medical 

Imaging, vol. 6, no. 3, pp. 228-238, 1987. 

56 E. Levitan, G. T. Herman, “A maximum a posteriori probability expectation 

maximization algorithm for image reconstruction in emission tomography,” IEEE 

Transactions on Medical Imaging, vol. 6, no. 3, pp. 185-192, 1987. 

57 T. Herbert, R. Leachy, “A generalized EM algorithm for 3-D Bayesian reconstruction 

from projection data using Gibbs priors,” IEEE Transactions on Medical Imaging, 

vol. 8, no. 2, pp. 194-202, 1989. 

58 P. J. Green, “Bayesian reconstructions from emission tomography data using a 

modified EM algorithm,” IEEE Transactions on Medical Imaging, vol. 9, no. 1, pp. 

84-92, 1990. 

59 A. R. De Pierro, M. E. B. Yamagishi, “Fast EM-like methods for maximum “a 



Reference | 108  

 

 

posteriori” estimates in emission tomography,” IEEE Transactions on Medical 

Imaging, vol. 20, no. 4, pp. 280-288, 2001. 

60 I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization 

and momentum in deep learning,” in Proceedings of the 30th International 

Conference on Machine Learning, vol. 28, no. 3, pp. 1139-1147, 2013. 

61 A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning 

for computer vision: A brief review,” Computational intelligence and neuroscience, 

7068349, 2018. 

62 T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, et al., “Language models 

are few-shot learners,” in Advances in Neural Information Processing Systems 

(NeurIPS 2020), 2020. 

63 N. O’Mahony, S. Campbel, A. Carvalho, S. Harapanahalli, G. V. Hernandez, et al., 

“Deep learning vs. Traditional computer vision,” in Advances in Computer Vision, 

Cham, Switzerland:Springer, vol. 943, pp. 128-144, 2020. 

64 J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, et al., “Recent advances in 

convolutional neural networks,” Pattern recognition, vol. 77, pp. 354-377, 2018. 

65 R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural 

networks: an overview and application in radiology,” Insights into imaging, vol. 9, 

no. 4, pp. 611-629, 2018. 

66 O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for 

Biomedical Image Segmentation,” in Medical Image Computing and Computer-

Assisted Intervention–MICCAI 2015. Lecture Notes in Computer Science, vol 9351, 

2015. doi: 10.1007/978-3-319-24574-4_28. 

67 Ö Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: 

Learning Dense Volumetric Segmentation from Sparse Annotation,” in Medical 

Image Computing and Computer-Assisted Intervention–MICCAI 2016. Lecture 

Notes in Computer Science, vol 9901, 2016. doi: 10.1007/978-3-319-46723-8_49. 

68 S. Kaji, and S. Kida, “Overview of image-to-image translation by use of deep neural 

networks: denoising, super-resolution, modality conversion, and reconstruction in 

medical imaging,” Radiological Physics and Technology, vol. 12, no. 3, pp. 235-348, 

2019. 

69 N. S. Punn, and S. Agarwal, “Modality specific U-Net variants for biomedical image 

segmentation: a survey,” Artificial Intelligence Review, vol. 55, no. 7, pp. 5845-5889, 

2022. 

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-46723-8_49


Reference | 109  

 

 

70 F. Hashimoto, A. Kakimoto, N. Ota, S. Ito, and S. Nishizawa, “Automated 

segmentation of 2D low-dose CT images of the psoas-major muscle using deep 

convolutional neural networks,” Radiological Physics and Technology, vol. 12, no. 

2, pp. 210-215, 2019. 

71 F. Hashimoto, K. Ote, T. Oida, A. Teramoto, and Y. Ouchi, “Compressed-sensing 

magnetic resonance image reconstruction using an iterative convolutional neural 

network approach,” Applied Sciences, vol. 10, no. 6, 1902, 2020. 

72 F. Hashimoto, and K. Ote, “ReconU-Net: a direct PET image reconstruction using 

U-Net architecture with back projection-induced skip connection,” Physics in 

Medicine and Biology, 2024, doi: 10.1088/1361-6560/ad40f6. 

73 B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, M. S. Rosen, “Image reconstruction by 

domain-transform manifold learning,” Nature, vol. 555, pp. 487-492, 2018. 

74 I. Häggström, C. R. Schmidtlein, G. Campanella, T. J. Fuchs, “DeepPET: A deep 

encoder–decoder network for directly solving the PET image reconstruction inverse 

problem,” Medical Image Analysis, vol. 54, pp. 253-262, 2019. 

75 G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama, 

“Digital photography with flash and no-flash image pairs,” ACM Transactions on 

Graphics, vol. 23, no. 3, pp. 664-672, 2004. 

76 J. Cui, K. Gong, N. Guo, C. Wu, X. Meng, K. Kim, et al., “PET image denoising 

using unsupervised deep learning,” European Journal of Nuclear Medicine and 

Molecular Imaging, vol. 46, no. 13, pp. 2780-2789, 2019. 

77 F. Hashimoto, H. Ohba, K. Ote, and A. Teramoto, “Unsupervised dynamic PET 

image denoising with anatomical information,” Medical Imaging and Information 

Sciences, vol. 37, no. 3, pp. 58-61, 2020. 

78 Y. Onishi, F. Hashimoto, K. Ote, H. Ohba, R. Ota, et al., “Anatomical-guided 

attention enhances unsupervised PET image denoising performance,” Medical Image 

Analysis, vol. 74, 102226, 2021. 

79 F. Hashimoto, H. Ohba, K. Ote, A. Teramoto, and H. Tsukada, “Dynamic PET image 

denoising using deep convolutional neural networks without prior training datasets,” 

IEEE Access, vol. 7, pp. 96594-96603, 2019. 

80 F. Hashimoto, H. Ohba, K. Ote, A. Kakimoto, H. Tsukada, and Y. Ouchi, “4D deep 

image prior: dynamic PET image denoising using an unsupervised four-dimensional 

branch convolutional neural network,” Physics in Medicine and Biology, vol. 66, no. 

1, 015006, 2021. 

https://doi.org/10.1088/1361-6560/ad40f6


Reference | 110  

 

 

81 S. Ioffe, and C. Szegedy, “Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift,” in Proceedings of the 32nd 

International Conference on Machine Learning, in Proceedings of Machine 

Learning Research, vol. 37, pp. 448-456, 2015. Available :  

https://proceedings.mlr.press/v37/ioffe15.html 

82 H. Fukui, T. Yamashita, Y. Kato, R. Matsui, T. Ogata, et al., “Multiple Facial 

Attributes Estimation Based on Weighted Heterogeneous Learning,” in Computer 

Vision – ACCV 2016 Workshops. ACCV 2016, vol. 10117, 2017. doi: 10.1007/978-3-

319-54427-4_29. 

83 K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing 

Human-Level Performance on ImageNet Classification,” in Proceedings of the IEEE 

International Conference on Computer Vision, pp. 1026-1034, 2015. doi: 

10.1109/ICCV.2015.123. 

84 B. Aubert-Broche, M. Griffin, G. B. Pike, A. C. Evans, and D. L. Collins, “Twenty 

new digital brain phantoms for creation of validation image data bases,” IEEE 

Transactions on Medical Imaging, vol. 25, no. 11, pp. 1410-1416, 2006. 

85 BrainWeb: Simulated Brain Database. Available: https://brainweb.bic.mni.mcgill.ca/ 

86 D. Feng, K. P. Wong, C. M. Wu, and W. C. Siu, “A technique for extracting 

physiological parameters and the required input function simultaneously from PET 

image measurements: Theory and simulation study,” IEEE Transactions on 

Information Technology in Biomedicine, vol. 1, no. 4, pp. 243-254, 1997. 

87 H. Watabe, Y. Ikoma, Y. Kimura, M. Naganawa, and M. Shidahara, “PET kinetic 

analysis—compartmental model,” Annals of Nuclear Medicine, vol. 20, no. 9, pp. 

583-588, 2006. 

88 C. S. Patlak, R. G. Blasberg, and J. D. Fenstermacher, “Graphical evaluation of 

blood-to-brain transfer constants from multiple-time uptake data,” Journal of 

Cerebral Blood Flow and Metabolism, vol. 3, no. 1, pp. 1-7, 1983. 

89 PMOD Technologies LLC – PMOD Technologies. Available: 

https://www.pmod.com/web/ 

90 Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: 

from error visibility to structural similarity,” IEEE Transactions on Image Processing, 

vol. 13, no. 4, pp. 600-612, 2004. 

91 L. Farde, E. Ehrin, L. Eriksson, T. Greitz, H. Hall, C. G. Hedström, et al., “Substituted 

benzamides as ligands for visualization of dopamine receptor binding in the human 

https://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1007/978-3-319-54427-4_29
https://doi.org/10.1007/978-3-319-54427-4_29
https://doi.org/10.1109/ICCV.2015.123
https://brainweb.bic.mni.mcgill.ca/
https://www.pmod.com/web/


Reference | 111  

 

 

brain by positron emission tomography,” Proceedings of the National Academy of 

Sciences, vol. 82, no. 11, pp. 3863-3867, 1985. 

92 Y. Tomonari, Y. Onishi, F. Hashimoto, K. Ote, T. Okamoto, and H. Ohba, “Animal 

PET scanner with a large field of view is suitable for high-throughput scanning of 

rodents,” Annals of Nuclear Medicine, 2024. (In press) 

93 E. Tanaka, and H. Kudo, “Optimal relaxation parameters of DRAMA (Dynamic 

RAMLA) aiming at one-pass image reconstruction for 3D-PET,” Physics in 

Medicine and Biology, vol. 55, no. 10, pp. 2917-2939, 2010. 

94 J. Logan, J. S. Fowler, N. D. Volkow, G. J. Wang, Y. S. Ding, and D. L. Alexoff, 

“Distribution volume ratios without blood sampling from graphical analysis of PET 

data,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 5, pp. 834-840, 

1996. 

95 K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1397-1409, 2012. 

96 K. Gong, J. Guan, C. C. Liu, and J. Qi, “PET image denoising using a deep neural 

network through fine tuning,” IEEE Transactions on Radiation and Plasma Medical 

Sciences, vol. 3, no. 2, pp. 153-161, 2018. 

97 K. Ote, A. Tokui, F. Hashimoto, T. Isobe, A. Saito, and T. Omura, “PET Image Noise 

Removal by Covolutional Neural Networks,” Medical Imaging Technology, vol.37, 

no. 1, pp. 35-45, 2019. [in Japanese] 

98 Y. Wang, B. Yu, L. Wang, C. Zu, D. S. Lalush, W. Lin, X. Wu, J. Zhou, D. Shen, and 

L. Zhou, “3D conditional generative adversarial networks for high-quality PET 

image estimation at low dose,” Neuroimage, vol. 174, pp. 550-562, 2018. 

99 Y. Lei, X. Dong, T. Wang, K. Higgins, T. Liu, W. J. Curran, H. Mao, J. A. Nye, and 

X. Yang, “Whole-body PET estimation from low count statistics using cycle-

consistent generative adversarial networks,” Physics in Medicine and Biology, vol. 

64, no. 21, 215017, 2019. 

100 S. Y. Yie, S. K. Kang, D. Hwang, and J. S. Lee, “Self-supervised PET denoising,” 

Nuclear Medicine and Molecular Imaging, vol. 54, np. 6, pp. 299-304, 2020. 

101 S. K. Kang, S. Y. Yie, J. S. Lee, “Noise2Noise Improved by Trainable Wavelet 

Coefficients for PET Denoising,” Electronics, vol. 10, no. 13, 1529, 2021. 

102 T. A. Song, F. Yang, J. Dutta, “Noise2Void: unsupervised denoising of PET images,” 

Physics in Medicine and Biology, vol. 66, 214002, 2021. 

103 K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale 



Reference | 112  

 

 

image recognition,” arXiv preprint, arXiv:1409.1556, 2014. 

104 C. Chan, R. Fulton, R. Barnett, D. D. Feng, and S. Meikle, “Postreconstruction 

nonlocal means filtering of whole-body PET with an anatomical prior,” IEEE 

Transactions on Medical Imaging, vol. 33, no. 3, pp. 636-650, 2014. 

105 M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi, “Non-local transform-domain 

filter for volumetric data denoising and reconstruction,” IEEE Transactions on Image 

Processing, vol. 22, no. 1, pp. 119-133, 2013. 

106 R. Heckel, and P. Hand, “Deep decoder: Concise image representations from 

untrained non-convolutional networks,” arXiv preprint, arXiv:1810.03982, 2018. 

107 F. Hashimoto, H. Ohba, K. Ote, and A. Teramoto, “Unsupervised dynamic PET 

image denoising with anatomical information,” Medical Imaging and Information 

Sciences, vol. 37, no. 3, pp.58-61, 2020. 

108 D. Zhao, F. Zhao, and Y. Gan, “Reference-driven compressed sensing MR image 

reconstruction using deep convolutional neural networks without pre-training,” 

Sensors, vol. 20, no. 1, 308, 2020. 

109 A. Rahmim, K. Dinelle, J. C. Cheng, M. A. Shilov, W. P. Segars, S. C. Lidstone, S. 

Blinder, O. G. Rousset, H. Vajihollahi, B. M. W. Tsui, D. F. Wong, and V. Sossi, 

“Accurate event-driven motion compensation in high-resolution PET incorporating 

scattered and random events,” IEEE Transactions on Medical Imaging, vol. 27, no. 

8, pp. 1018-1033, 2008. 

110 C. Catana, T. Benner, A. van der Kouwe, L. Byars, M. Hamm, D. B. Chonde, C. J. 

Michel, G. E. Fakhri, M. Schmand, and A. G. Sorensen, “MRI-assisted PET motion 

correction for neurologic studies in an integrated MR-PET scanner,” Journal of 

Nuclear Medicine, vol. 52, no. 1, pp. 154-161, 2011. 

111 Y. Onishi, T. Isobe, M. Ito, F. Hashimoto, T. Omura, and E. Yoshikawa, “Performance 

evaluation of dedicated brain PET scanner with motion correction system,” Annals 

of Nuclear Medicine, vol. 36, no. 8, pp. 746-755, 2022. 

112 K. Gong, C. Catana, J. Qi, and Q. Li, “PET image reconstruction using deep image 

prior,” IEEE Transactions on Medical Imaging, vol. 38, no. 7, pp. 1655-1665, 2019. 

113 F. Hashimoto, K. Ote, and Y. Onishi, “PET Image Reconstruction Incorporating Deep 

Image Prior and a Forward Projection Model,” IEEE Transactions on Radiation and 

Plasma Medical Sciences, vol. 6, no. 8, pp. 841-846, 2022. 

114 E. V. R. Di Bella, A. B. Barclay, R. L. Eisner, and R. W. Schafer, “A comparison of 

rotation-based methods for iterative reconstruction algorithms,” IEEE Transactions 



Reference | 113  

 

 

on Nuclear Science, vol. 43, no. 6, pp. 3370-3376, 1996. 

115 C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-BFGS-B: Fortran 

subroutines for large-scale bound-constrained optimization,” ACM Transactions on 

Mathematical Software, vol. 23, no. 4, pp. 550-560, 1997. 

116 Y. Nesterov, “A method of solving a convex programming problem with convergence 

rate O(1/k2),” Soviet Mathematics Doklady, vol. 27, pp. 372-376, 1983. 

117 D. P. Kingma, and J. Ba, “Adam: A method for stochastic optimization,” arXiv 

preprint, arXiv:1412.6980, 2014. 

118 S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization 

and statistical learning via the alternating direction method of multipliers,” 

Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011. 

119 K. Gong, J. Guan, K. Kim, X. Zhang, J. Yang, Y. Seo, G. E. Fakhri, J. Qi, and Q. Li, 

“Iterative PET image reconstruction using convolutional neural network 

representation,” IEEE Transactions on Medical Imaging, vol. 38, no. 3, pp. 675-685, 

2019. 

120 Z. Xie, R. Baikejiang, T. Li, X. Zhang, K. Gong, M. Zhang, W. Qi, E. Asma, and J. 

Qi, “Generative adversarial network based regularized image reconstruction for PET,” 

Physics in Medicine and Biology, vol. 65, no. 12, 125016, 2020. 

121 A. Mehranian, and A. J. Reader, “Model-Based Deep Learning PET Image 

Reconstruction Using Forward–Backward Splitting Expectation–Maximization,” 

IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 5, no. 1, pp. 54-

64, 2021. 

122 K. Kim, D. Wu, K. Gong, J. Dutta, J. H. Kim, Y. D. Son, H. K. Kim, G. E. Fakhri, 

and Q. Li, “Penalized PET reconstruction using deep learning prior and local linear 

fitting,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1478-1487, 2018. 

123 F. Hashimoto, Y. Onishi, K. Ote, H. Tashima, and T. Yamaya, “Fully 3D 

implementation of the end-to-end deep image prior-based PET image reconstruction 

using block iterative algorithm,” Physics in Medicine and Biology, vol. 68, no. 15, 

155009, 2023. 

124 J. Nuyts, D. Beque, P. Dupont, L. Mortelmans, “A concave prior penalizing relative 

differences for maximum-a-posteriori reconstruction in emission tomography,” IEEE 

Transactions on Nuclear Science, vol. 49, no. 1, pp. 56-60, 2002. 

125 H. M. Hudson, and R. S. Larkin, “Accelerated image reconstruction using ordered 

subsets of projection data,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, 



Reference | 114  

 

 

pp. 601-609, 1994. 

126 S. R. Meikle, B. F. Hutton, D. L. Bailey, P. K. Hooper, and M. J. Fulham, 

“Accelerated EM reconstruction in total-body PET: potential for improving tumour 

detectability,” Physics in Medicine and Biology, vol. 39, no. 10, 1689, 1994. 

127 J. Nuyts, D. Beque, P. Dupont, and L. Mortelmans, “A concave prior penalizing 

relative differences for maximum-a-posteriori reconstruction in emission 

tomography,” IEEE Transactions on Nuclear Science, vol. 49, no. 1, pp. 56-60, 2002. 

128 K. Miwa, T. Yoshii, K. Wagatsuma, S. Nezu, Y. Kamitaka, T. Yamao, R. Kobayashi, 

S. Fukuda, Y. Yakushiji, N. Miyaji, and K. Ishii, “Impact of γ factor in the penalty 

function of Bayesian penalized likelihood reconstruction (Q. Clear) to achieve high-

resolution PET images,” EJNMMI Physics, vol. 10, no. 1, 4, 2023. 

129 E. J. Teoh, D. R. McGowan, R. E. Macpherson, K. M. Bradley, and F. V. Gleeson, 

“Phantom and clinical evaluation of the bayesian penalized likelihood reconstruction 

algorithm Q.clear on an LYSO PET/CT system,” Journal of Nuclear Medicine, vol. 

56, no. 9, pp. 1447-1452, 2015. 

130 R. L. Siddon, “Fast calculation of the exact radiological path for a 3-dimensional CT 

array,” Medical Physics, vol. 12, no. 2, pp. 252-255, 1985. 

131 S. Yatawatta, L. De Clercq, H. Spreeuw, and F. Diblen, “A stochastic LBFGS 

algorithm for radio interferometric calibration,” in Proc. IEEE Data Science 

Workshop (DSW), pp 208-212, 2019. 

132 N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T, P. Tang, “On large-

batch training for deep learning: Generalization gap and sharp minima,” arXiv 

preprint, arXiv:1609.04836, 2016. 

133 J. Cui, K. Gong, N. Guo, C. Wu, K. Kim, H. Liu, and Q. Li, “Populational and 

individual information based PET image denoising using conditional unsupervised 

learning,” Physics in Medicine and Biology, vol. 66, no. 15, 155001, 2021. 

134 Y. Onishi, F. Hashimoto, K. Ote, K. Matsubara, and M. Ibaraki, “Self-supervised pre-

training for deep image prior-based robust pet image denoising,” IEEE Transactions 

on Radiation and Plasma Medical Sciences, vol. 8, no. 4, pp. 348-356, 2024. 

135 F. Hashimoto, Y. Onishi, K. Ote, H. Tashima, and T. Yamaya, “Two-step optimization 

for accelerating deep image prior-based PET image reconstruction,” Radiological 

Physics and Technology, 2024. [Online]. Available: https://doi.org/10.1007/s12194-

024-00831-9 

https://doi.org/10.1007/s12194-024-00831-9
https://doi.org/10.1007/s12194-024-00831-9


| 115  

 

 

Publication 

Journal papers 

1. Y. Iwao, K. Shiotsuki, F. Hashimoto, T. Ochiai, T. Kagawa, R. Nagata, M. Eto, Y. 

Hatanaka, Y. Yoshida, and Y. Asayama, “Explainable Deep Learning for Predicting 

Bone Mineral Density using Clavicle Features on Chest Radiographs: A Multi-task 

Approach with Regression and Segmentation,” Radiological Physics and 

Technology. (Under review) 

2. K. Ote, F. Hashimoto, Y. Onishi, and Y. Ouchi, “List-Mode PET Image 

Reconstruction Using Dykstra-Like Splitting,” IEEE Transactions on Radiation and 

Plasma Medical Sciences, 2024. [Online]. Available:  

https://doi.org/10.1109/TRPMS.2024.3441526 

3. F. Hashimoto, Y. Onishi, K. Ote, H. Tashima, and T. Yamaya, “Two-step optimization 

for accelerating deep image prior-based PET image reconstruction,” Radiological 

Physics and Technology, 2024. [Online]. Available: https://doi.org/10.1007/s12194-

024-00831-9 

4. F. Hashimoto, and K. Ote, “ReconU-Net: a direct PET image reconstruction using 

U-Net architecture with back projection-induced skip connection,” Physics in 

Medicine and Biology, vol. 69, no. 10, 105022, 2024. 

5. Y. Tomonari, Y. Onishi, F. Hashimoto, K. Ote, T. Okamoto, and H. Ohba, “Animal 

PET scanner with a large field of view is suitable for high-throughput scanning of 

rodents,” Annals of Nuclear Medicine, vol. 38, no. 7, pp. 544-552, 2024. 

6. Y. Onishi*, F. Hashimoto, K. Ote, and R. Ota*, “Whole reconstruction-free system 

design for direct positron emission imaging from image generation to attenuation 

correction,” IEEE Transactions on Medical Imaging, vol. 43, no. 5, pp. 1654-1663, 

2024. (* Equal contribution) 

7. Y. Onishi, F. Hashimoto, K. Ote, K. Matsubara, and M. Ibaraki, “Self-Supervised 

Pre-Training for Deep Image Prior-Based Robust PET Image Denoising,” IEEE 

Transactions on Radiation and Plasma Medical Sciences, vol. 8, no. 4, pp. 348-356, 

2024. 

8. A. Obana, K. Ote, Y. Gohto, H. Yamada, F. Hashimoto, S. Okazaki, and R. Asaoka, 

“Deep learning-based correction of cataract-induced influence on macular pigment 

optical density measurement by autofluorescence spectroscopy,” PLos ONE, vol. 19, 

https://doi.org/10.1109/TRPMS.2024.3441526
https://doi.org/10.1007/s12194-024-00831-9
https://doi.org/10.1007/s12194-024-00831-9


Publication | 116  

 

 

no. 2, e0298132, 2024. 

9. F. Hashimoto, Y. Onishi, K. Ote, H. Tashima, A. J. Reader, and T. Yamaya, “Deep 

learning-based PET image denoising and reconstruction: a review,” Radiological 

Physics and Technology, vol. 17, no. 1, pp. 24-46, 2024. (Invited review paper) 

10. F. Hashimoto, Y. Onishi, K. Ote, H. Tashima, and T. Yamaya, “Fully 3D 

implementation of the end-to-end deep image prior-based PET image reconstruction 

using block iterative algorithm,” Physics in Medicine and Biology, vol. 68, no. 15, 

155009, 2023. 

11. K. Ote, F. Hashimoto, Y. Onishi, T. Isobe, and Y. Ouchi, “List-Mode PET Image 

Reconstruction Using Deep Image Prior,” IEEE Transactions on Medical Imaging, 

vol. 42, no. 6, pp. 1822-1834, 2023. 

12. F. Hashimoto, K. Ote, and Y. Onishi, “PET Image Reconstruction Incorporating Deep 

Image Prior and a Forward Projection Model,” IEEE Transactions on Radiation and 

Plasma Medical Sciences, vol. 6, no. 8, pp. 841-846, 2022. 

13. Y. Onishi, T. Isobe, M. Ito, F. Hashimoto, T. Omura, and E. Yoshikawa, “Performance 

evaluation of dedicated brain PET scanner with motion correction system,” Annals 

of Nuclear Medicine, vol. 36, no. 8, pp. 746-755, 2022. 

14. Y. Onishi, F. Hashimoto, K. Ote, and R. Ota, “Unbiased TOF estimation using 

leading-edge discriminator and convolutional neural network trained by single-

source-position waveforms,” Physics in Medicine and Biology, vol. 67, no. 7, 

04NT01, 2022. 

15. K. Ote, and F. Hashimoto, “Deep-learning-based fast TOF-PET image reconstruction 

using direction information,” Radiological Physics and Technology, vol. 15, no. 1, 

pp. 72-82, 2022. 

16. S. I. Kwon*, R. Ota*, E. Berg*, F. Hashimoto, K. Nakajima, I. Ogawa, Y. Tamagawa, 

T. Omura, T. Hasegawa, and S. R. Cherry, “Ultrafast timing enables reconstruction-

free positron emission imaging,” Nature Photonics, vol. 15, no. 12, pp. 914-918, 

2021. (* Equal contribution) 

17. Y. Onishi*, F. Hashimoto*, K. Ote, H. Ohba, R. Ota, E. Yoshikawa, and Y. Ouchi, 

“Anatomical-Guided Attention Enhances Unsupervised PET Image Denoising 

Performance,” Medical Image Analysis, vol. 74, 102226, 2021. (* Equal 

contribution) 

18. F. Hashimoto*, M. Ito*, K. Ote, T. Isobe, H. Okada, and Y. Ouchi, “Deep learning-

based attenuation correction for brain PET with various radiotracers,” Annals of 



Publication | 117  

 

 

Nuclear Medicine, vol. 35, no. 6, pp. 691-701, 2021. (* Equal contribution) 

19. A. Obana, K. Ote, F. Hashimoto, R. Asaoka, Y. Gohto, S. Okazaki, and H. Yamada, 

“Correction for the Influence of Cataract on Macular Pigment Measurement by 

Autofluorescence Technique Using Deep Learning,” Translational Vision Science 

and Technology, vol. 10, no. 2, 18, 2021. 

20. F. Hashimoto, H. Ohba, K. Ote, A. Kakimoto, H. Tsukada, and Y. Ouchi, “4D deep 

image prior: dynamic PET image denoising using an unsupervised four-dimensional 

branch convolutional neural network,” Physics in Medicine and Biology, vol. 66, no. 

1, 015006, 2021. 

21. J. Fang, H. Ohba, F. Hashimoto, H. Tsukada, F. Chen, and H. Liu, “Imaging 

mitochondrial complex I activation during a vibrotactile stimulation: A PET study 

using [18F]BCPP-EF in the conscious monkey brain,” Journal of cerebral blood flow 

and metabolism, vol. 40, no. 12, pp. 2521-2532, 2020. 

22. K. Ote, R. Ota, F. Hashimoto, and T. Hasegawa, “Direct Annihilation Position 

Classification Based on Deep Learning Using Paired Cherenkov Detectors: A Monte 

Carlo Study,” Applied Sciences, vol. 10, no. 22, 7957, 2020. 

23. K. Ote, F. Hashimoto, A. Kakimoto, T. Isobe, T. Inubushi, et al., “Kinetics-Induced 

Block Matching and 5-D Transform Domain Filtering for Dynamic PET Image 

Denoising,” IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 4, 

no. 6, pp. 720-728, 2020. 

24. F. Hashimoto, H. Ohba, K. Ote, and A. Teramoto, “Unsupervised dynamic PET 

image denoising with anatomical information,” Medical Imaging and Information 

Sciences, vol. 37, no. 3, pp.58-61, 2020. 

25. F. Hashimoto, K. Ote, T. Oida, A. Teramoto, and Y. Ouchi, “Compressed-sensing 

magnetic resonance image reconstruction using an iterative convolutional neural 

network approach,” Applied Sciences, vol. 10, no. 6, 1902, 2020. 

26. F. Hashimoto, H. Ohba, K. Ote, A. Teramoto, and H. Tsukada, “Dynamic PET image 

denoising using deep convolutional neural networks without prior training datasets,” 

IEEE Access, vol. 7, pp. 96594-96603, 2019. 

27. F. Hashimoto, A. Kakimoto, N. Ota, S. Ito, and S. Nishizawa, “Automated 

segmentation of 2D low-dose CT images of the psoas-major muscle using deep 

convolutional neural networks,” Radiological Physics and Technology, vol. 12, no. 

2, pp. 210-215, 2019. 

28. F. Hashimoto, K. Ote, R. Ota, and T. Hasegawa, “A feasibility study on 3D 



Publication | 118  

 

 

interaction position estimation using deep neural network in Cherenkov-based 

detector: a Monte Carlo simulation study,” Biomedical Physics and Engineering 

Express, vol. 5, no. 3, 035001, 2019. 

29. F. Hashimoto, H. Ohba, K. Ote, and H. Tsukada, “Denoising of Dynamic Sinogram 

by Image Guided Filtering for Positron Emission Tomography,” IEEE Transactions 

on Radiation and Plasma Medical Sciences, vol. 2, no. 6, pp. 541-548, 2018. 

30. M. Kanazawa, S. Nishiyama, F. Hashimoto, T. Kakiuchi, and H. Tsukada, 

“Evaluation of D-isomers of 4-borono-2-18F-fluoro-phenylalanine and O-11C-

methyl-tyrosine as brain tumor imaging agents: a comparative PET study with their 

L-isomers in rat brain glioma,” EJNMMI Research, vol. 8, 47, 2018. 

31. F. Hashimoto, A. Teramoto, Y. Asada, S. Suzuki, and H. Fujita, “Dose reduction 

technique in diagnostic X-ray computed tomography by use of 6-channel multileaf 

collimators,” Radiological Physics and Technology, vol. 10, no. 1, pp. 60-67, 2017. 

32. 橋本二三生, 大西佑弥, 大手希望, “Deep learning PET 画像再構成への招待,” 

Medical Imaging Technology, vol. 41, no. 4-5, pp. 162-170, 2023.（招待レビュー

論文） 

F. Hashimoto, Y. Onishi, and K. Ote, “Invitation to Deep Learning-based PET Image 

Reconstruction,” Medical Imaging Technology, vol. 41, no. 4-5, pp. 162-170, 2023. 

(Invited review paper, in Japanese) 

33. 大手希望, 得居葵, 橋本二三生, 磯部卓志, 斉藤右典, 大村知秀, “畳み込み

ニューラルネットワークによる PET 画像ノイズ除去 ,” Medical Imaging 

Technology, vol. 37, no. 1, pp. 35-45, 2019. 

K. Ote, A. Tokui, F. Hashimoto, T. Isobe, A. Saito, and T. Omura, “PET Image Noise 

Removal by Convolutional Neural Networks,” Medical Imaging Technology, vol. 37, 

no. 1, pp. 35-45, 2019. (In Japanese) 

34. 橋本二三生, 大手希望, “Image guided filter を用いたダイナミック PET 画像

のMAP 画像再構成,” 医用画像情報学会雑誌, vol. 35, no. 4, pp. 59-61, 2018. 

F. Hashimoto, and K. Ote, “MAP image reconstruction of dynamic PET images using 

image guided filter,” Medical Imaging and Information Sciences, vol. 35, no. 4, pp. 

59-61, 2018. (In Japanese) 

35. 橋本二三生, 寺本篤司, 浅田恭生, 鈴木昇一, 藤田広志, “二次元領域設定型

CT 装置の開発 ‐アクティブコリメータを搭載した実験装置の製作と基礎的

評価‐,” Medical Imaging Technology, vol. 34, no. 2, pp. 123-127, 2016. 

F. Hashimoto, A. Teramoto, Y. Asada, S. Suzuki, and H. Fujita, “Development of the 



Publication | 119  

 

 

Two-dimensional Region-setting CT System: Development and Basic Evaluation of 

the Experimental System Using the Active Collimators,” Medical Imaging 

Technology, vol. 34, no. 2, pp. 123-127, 2016. (In Japanese) 

36. 大澤慎也, 村田千佳, 橋本二三生, 寺本篤司, 藤田広志,”近赤外光 CT に関す

る基礎的検討 ‐ディジタル一眼レフカメラを用いた実験装置の開発‐,” 医用

画像情報学会雑誌, vol. 32, no. 2, pp. 44-47, 2015. 

S. Osawa, C. Murata, F. Hashimoto, A. Teramoto, and H. Fujita, “ Basic study on the 

near-infrared light computed tomography - Development of the experimental system 

using a digital single‐lens reflex camera -,” Medical Imaging and Information 

Sciences, vol. 32, no. 2, pp. 44-47, 2015. (In Japanese) 

 

 

International conferences 

1. T. Yamaya, T. Ishikawa, G. Akamatsu, H. Tashima, F. Nishikido, M. Takahashi, F. 

Hashimoto, R. Ota, S. I. Kwon, and S. R. Cherry, "Dual-panel PET system to be 

enabled by 30-ps super-fast detector: simulation study," Society of Nuclear Medicine 

and Molecular Imaging (SNMMI) Annual Meeting 2024, June, 2024. 

2. T. Yamaya, T. Ishikawa, G. Akamatsu, H. Tashima, F. Nishikido, M. Takahashi, C. 

Toramatsu, Y. Iwao, F. Hashimoto, R. Ota, S. I. Kwon, and S. R. Cherry, "Dual-panel 

geometry for PET-guided therapy to be enabled by super-fast detector: simulation 

study," The 10th Conference on PET, SPECT, and MR Multimodal Technologies, 

Total Body and Fast Timing in Medical Imaging, May, 2024. 

3. F. Hashimoto, K. Ote, H. Tashima, G. Akamatsu, Y. Iwao, M. Takahashi, and T. 

Yamaya, "Uncertainty-based mixture of a deep image prior and an original 

reconstructed images in PET," The 3rd International Conference on Radiological 

Physics and Technology, April, 2024. 

4. T. Yamaya, T. Ishikawa, G. Akamatsu, H. Tashima, F. Nishikido, M. Takahashi, F. 

Hashimoto, and R. Ota, "Dual-panel PET system to be enabled by 30-ps super-fast 

detector: a preliminary simulation study," The 3rd International Conference on 

Radiological Physics and Technology, April, 2024. 

5. F. Hashimoto, Y. Onishi, K. Ote, H. Tashima, and T. Yamaya, "Accelerated Deep 

Image Prior-based PET Image Reconstruction Using Two-Step Optimization," The 

2023 IEEE Nuclear Science Symposium and Medical Imaging Conference, Nov. 



Publication | 120  

 

 

2023. 

6. F. Hashimoto, K. Ote, and Y. Onishi, "ReconU-Net: Direct PET Image 

Reconstruction Using Back Projection-induced Skip Connection," The 2023 IEEE 

Nuclear Science Symposium and Medical Imaging Conference, Nov. 2023. 

7. Y. Onishi, F. Hashimoto, K. Ote, and R. Ota, "Proposal of Morphological Imaging 

for direct Positron Emission Imaging," The 2023 IEEE Nuclear Science Symposium 

and Medical Imaging Conference, Nov. 2023. 

8. F. Hashimoto, K. Ote, Y. Onishi, H. Tashima, and T. Yamaya, "End-to-end 

Unsupervised CNN-based PET Image Reconstruction with Relative Difference 

Penalty," The 2nd International Conference on Radiological Physics and Technology, 

April, 2023. 

9. F. Hashimoto, K. Ote, Y. Onishi, H. Tashima, and T. Yamaya, "3D Implementation 

of the End-to-end Deep Image Prior-based PET Image Reconstruction," The 2022 

IEEE Nuclear Science Symposium and Medical Imaging Conference, Nov. 2022. 

10. Y. Onishi, F. Hashimoto, K. Ote, K. Matsubara, and M. Ibaraki, "Using Self-

Supervised Pretraining Model for Unsupervised PET Image Denoising," The 2022 

IEEE Nuclear Science Symposium and Medical Imaging Conference, Nov. 2022. 

11. K. Ote, F. Hashimoto, Y. Onishi, and T. Isobe, "List-Mode PET Image Reconstruction 

Using Deep Image Prior," The 2022 IEEE Nuclear Science Symposium and Medical 

Imaging Conference, Nov. 2022. 

12. R. Ota, S. I. Kwon, E. Berg, F. Hashimoto, K. Nakajima, I. Ogawa, Y. Tamagawa, T. 

Omura, T. Hasegawa, and S. R. Cherry, "Reconstruction-free imaging of positron-

emitting radionuclides using ultra-fast detectors," The virtual 2021 IEEE Nuclear 

Science Symposium and Medical Imaging Conference, Nov. 2021. 

13. Y. Onishi, F. Hashimoto, K. Ote, H. Ohba, R. Ota, E. Yoshikawa, and Y. Ouchi, 

"Unsupervised PET Image Denoising Using Attention-Guided Anatomical 

Information," The virtual 2021 IEEE Nuclear Science Symposium and Medical 

Imaging Conference, Nov. 2021. 

14. K. Ote, and F. Hashimoto, "Deep Learning-based Fast TOF-PET Image 

Reconstruction Using Direction Information," The virtual 2021 IEEE Nuclear 

Science Symposium and Medical Imaging Conference, Nov. 2021. 

15. F. Hashimoto, H. Ohba, K. Ote, A. Kakimoto, H. Tsukada, A. Teramoto, and Y. Ouchi, 

"Dynamic PET Image Denoising Using 4-dimensional Deep Image Prior," The 

virtual 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, 



Publication | 121  

 

 

Nov. 2020. 

16. K. Ote, R. Ota, F. Hashimoto, and T. Hasegawa, "Direct Annihilation Position 

Regression based on Deep Learning and Digital Offset using Pair of Cherenkov 

Detectors: Monte Carlo Study," The virtual 2020 IEEE Nuclear Science Symposium 

and Medical Imaging Conference, Nov. 2020. 

17. A. Obana, K. Ote, F. Hashimoto, Y. Gohto, S. Okazaki, and H. Yamada, "Correction 

of the influence of cataract on macular pigment measurement by autofluorescence 

technique using deep learning," Association for Research in Vision and 

Ophthalmology (ARVO) 2020 Annual Meeting, June, 2020. 

18. F. Hashimoto, H. Ohba, K. Ote, A. Kakimoto, H. Tsukada, A. Teramoto, and Y. Ouchi, 

“End-to-end Dynamic PET Image Denoising Using 4-dimensional Unsupervised 

Convolutional Neural Network,” The 18th Conference of Peace through Mind/Brain 

Science, Feb. 2020. 

19. K. Ote, F. Hashimoto, A. Kakimoto, T. Isobe, T. Inubushi, A. Tokui, A. Saito, T. 

Omura, E. Yoshikawa, A. Teramoto, and Y. Ouchi, “Kinetics-Induced Block 

Matching and 5D Transform Domain Filtering for Dynamic PET Image Denoising,” 

The 18th Conference of Peace through Mind/Brain Science, Feb. 2020. 

20. F. Hashimoto, M. Ito, K. Ote, T. Isobe, H. Okada, Y. Ouchi, "Emis2Trans: 

Attenuation Correction for Brain PET With Many Types of PET Ligands Using 

Convolutional Neural Networks," The 2019 IEEE Nuclear Science Symposium and 

Medical Imaging Conference, Oct. 2019. 

21. K. Ote, F. Hashimoto, A. Kakimoto, T. Isobe, A. Tokui, E. Yoshikawa, T. Omura, A. 

Teramoto, and Y. Ouchi, "Block Matching and 5D Filtering of Dynamic PET 

Images," The 2019 IEEE Nuclear Science Symposium and Medical Imaging 

Conference, Oct. 2019. 

22. K. Ote, R. Ota, F. Hashimoto, and T. Hasegawa, "Direct Annihilation Position 

Classification based on Deep Learning using Pair of Cherenkov Detectors: Monte 

Carlo Study," The 2019 IEEE Nuclear Science Symposium and Medical Imaging 

Conference, Oct. 2019. 

23. F. Hashimoto, K. Ote, and H. Tsukada, "Dynamic PET Image Denoising Using Deep 

Convolutional Neural Network Without Training Datasets," Society of Nuclear 

Medicine and Molecular Imaging (SNMMI) Annual Meeting 2019, June, 2019. 

24. F. Hashimoto, K. Ote, R. Ota, R. Yamada, and T. Hasegawa, "Using deep learning to 

Estimate 3D Interaction Position in Cherenkov-based Detector: A Monte Carlo 



Publication | 122  

 

 

Simulation Study," The 2018 IEEE Nuclear Science Symposium and Medical 

Imaging Conference, Nov. 2018. 

25. F. Hashimoto, H. Ohba, K. Ote, and H. Tsukada, "Dynamic PET Denoising by Image 

Guided Filtering: A Preliminary Study," The 17th Conference of Peace through 

Mind/Brain Science, Feb. 2018. 

26. F. Hashimoto, A. Teramoto, Y. Asada, S. Suzuki, and H. Fujita, "Novel Concept for 

Dose Reduction -Region-setting CT: Is Multileaf Collimator Also Valuable for 

Diagnostic CT?," RSNA2015, Dec. 2015. 

27. F. Hashimoto, A. Teramoto, S. Suzuki, and H. Fujita, “A preliminary study on the 

development of a region-setting CT system using multi-leaf active collimators,” The 

International Forum on Medical Imaging in Asia, Jan. 2015. 

28. F. Hashimoto, C. Murata, A. Teramoto, S. Suzuki, and H. Fujita, “A basic study on 

region setting CT system: three-dimensional data collection and reconstruction using 

experimental system,” The 15th Asian Oceanian Congress of Radiology 2014, Sep. 

2014. 

29. A. Teramoto, T. Ohno, F. Hashimoto, C. Murata, K. Takahashi, and H. Fujita, "Basic 

study on the development of a high-resolution breast CT,” International Workshop 

on Breast Imaging, June. 2014. 

30. C. Murata, F. Hashimoto, A. Teramoto, and H. Fujita,"Educational system of 

computed tomography using optical computed tomography,” Computer Assisted 

Radiology and Surgery 28th International Congress and Exhibition, June. 2014. 

 



| 123  

 

 

Acknowledgement 

本研究を進めるにあたりご指導、ご教示いただきました山谷泰賀客員教授に

心より感謝いたします。山谷先生の強いリーダーシップや鋭い視点は大変勉強

になりました。ありがとうございました。 

また、本論文をまとめるにあたり有益なご助言、ご提言をいただきました羽石

秀昭教授、兪文偉教授、菅幹生准教授に心より感謝いたします。 

浜松ホトニクス株式会社中央研究所の原勉前所長をはじめ、塚田秀夫元 PET

研究グループ長、原田典弘企画推進グループ長、大庭弘行副第 5 研究室長には

社会人として働きながら大学院進学をサポートしていただきました。大手希望

主任部員、大田良亮部員、大西佑弥研究員とは日々の楽しいディスカッションの

中で、多くの有益なアイデアが生まれました。ありがとうございました。これか

らもよろしくお願いします。 

量子科学研究開発機構の田島英朗主幹研究員には、田島仕込みの画像再構成

と野球を教えていただきました。ありがとうございました。 

浜松医科大学の尾内康臣教授には、研究指導や臨床目線での助言だけでなく、

大学院進学も相談にも乗っていただきました。ありがとうございました。 

また、第 5 研究室のメンバー、イメージング物理研究グループのメンバーに

は公私にわたり大変お世話になりました。 

最後に、これまでの人生や研究生活を応援し続けてくれた家族に心から感謝

いたします。ありがとうございました。 

2024 年 9 月 橋本二三生 


