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Abstract

Magnetic dipole (M1) moments in nuclei neighboring the doubly-magic core are investigated by
the self-consistent mean-field (SCMF) approaches that allow for the breaking of the time-reversal
symmetry. By the SCMF calculations with the M3Y-P6 interaction, which keeps realistic spin-
isospin and tensor channels, the M1 moments are well reproduced, particularly those in the nuclei
adjacent to jj-closed magicity. The results are in better agreement with the data than those with
the Gogny-D1S interaction, slightly better than those of UNEDF1 supplemented by a spin-isospin
channel adjusted to the M1 moments themselves, and comparable to the shell-model results with
the chiral effective-field-theory (YEFT) interaction. Analyses via quadrupole moments, occupation
numbers and the lowest-order perturbation theory elucidate the cooperative effects of quadrupole
deformation and spin correlation on the displacement from the Schmidt values, which has been
known in terms of the quenching of the spin matrix elements. It is shown that a significant portion
of the spin correlation is carried by the spin-isospin and tensor channels in the effective interaction.
However, while agreement is remarkable at 131Sn™. 133Sn and 2°Pb, discrepancies remain at the

Z = odd nuclei 338b, 2°7Ti and 2"Bi, as in the yEFT-based shell-model results.

I. INTRODUCTION

Nucleon’s spin plays specific roles in nuclear structure. Its coupling to the orbital angular
momentum yields the spin-orbit (£s) splitting of the single-particle (s.p.) levels, which is
a source of the magic numbers associated with the so-called jj-closed shell [1]. The /s
splitting significantly depends on the proton (Z) and neutron (V) numbers, giving rise to
the appearance and disappearance of the magic numbers in nuclei far from [-stability [2, 3].
Moreover, nuclear weak processes, e.g., f-decay, double-f-decay, and neutrino scattering,
often occur through the spin degrees of freedom (d.o.f.) [1, 4-6]. Because of its relevance to
astrophysics and fundamental physics, understanding and proper treatment of nucleon spin
are highly desirable.

The self-consistent mean-field (SCMF) theory provides a promising framework for de-
scribing nuclear properties ranging from stable to unstable and from light to heavy nuclei

in a unified manner. In practice, it has the ability to reproduce and predict nuclear magic
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numbers all over the nuclear chart from scratch [7, 8]. The SCMF theory connects the prop-
erties of finite nuclei to those of infinite nuclear matter, making the best use of experiments
on Earth to predict nuclear properties in astrophysical environments, such as neutron stars.
This advantage can hold for the spin properties, as far as they are well examined in finite
nuclei. Furthermore, while the SCMF theory is suitable for describing the lowest-energy
states, such as ground state (g.s.), intrinsic state of ground rotational band, and isomeric
state, it is straightforwardly extended to excitations via the random-phase approximation
(RPA) [9-11] and nuclear scattering via the folding model [12, 13]. The SCMF theory
also supplies a basis of extended approaches; the generator-coordinate method [14, 15],
the particle-vibration-coupling model [16, 17], the subtracted second RPA [18], the time-
dependent density-matrix theory [19, 20], the hybrid configuration mixing model [21], and
so forth. There have been arguments for reinterpreting the nuclear SCMF theory in terms of
density-functional theory (DFT) [22-24]. The SCMF equations have the identical form to the
Kohn-Sham (KS) [25] or Kohn-Sham—-Bogoliubov-de Gennes equation [26]. The so-called ab
initio approaches have progressed, in which many-body correlations are taken into account
using the coupled-cluster method [27], the self-consistent Green’s function method [28, 29],
the similarity-renormalization-group (SRG) method [30], and others. The KS theory may
conceptually be an alternative approach to them, which takes account of many-body cor-
relations in the energy functional (EF). The KS theory may be extended so that principal
variables could be constituted by a class of physical quantities represented by the one-body
density matrix, whether it contains p(r) or not [31]. It seems sensible to identify the nuclear
SCMF theory, which could cover the spin properties, with the (generalized) KS theory for

nuclei, though we keep referring to it as SCMF theory in this paper to avoid confusion.

The SCMF theory needs an effective interaction as its input, which encompasses the ef-
fects of many-body correlations and corresponds to the EF of the KS theory. It is never a
trivial task to establish the effective interaction or EF. A popular method is fitting parame-
ters to measured quantities with respect to nuclear structure [32, 33], after assuming the form
of EF, typically the Skyrme form. However, since the spin d.o.f. tend to be masked as an
effect of the Pauli principle and nucleonic interaction, it is not easy to fix the spin-dependent
channels via fitting [32, 33]. As the spin operator is not invariant under the time-reversal
transformation 7, this problem is related to the T-symmetry in the mean field [34-37]. The

T-symmetry usually holds in the g.s.’s of even-even nuclei. The spin properties are more



visible in odd nuclei or proper excitations. It should be kept in mind that the non-central
channels in the interaction may significantly influence the spin properties of finite nuclei.

The magnetic dipole (M 1) moment is an observable sensitive to spin. In particular, those
of nuclei neighboring the doubly-magic core supply a good testing ground for the theoretical
description of the spin properties. For the single-particle or single-hole states, the M1
moments are governed by the orbital of the last nucleon [1, 4, 38], reaching the Schmidt values
[see Eq. (8)]. However, the measured M1 moments sizably deviate from the Schmidt values
in most nuclei [38], implicating quenching of the spin matrix elements. By microscopically
investigating various effects in the perturbation theory, the main source of quenching has
been attributed to core polarization (CP) [39-41], after a history of disputes. Thus, the
degree of quenching reflects the stiffness of the doubly-magic core, and is influenced by spin-
dependent channels of the interaction. As the M1 moment is basically represented by the
one-body density matrix, it can be taken as a principal variable of the KS approach. In this
context, it has been shown that deformation and 7-symmetry breaking cooperatively induce
moderate quenching [34-37]. The approach has been extended to open-shell nuclei [42-45].

The M1 moments in the vicinity of the doubly-magic nuclei have also been investigated
by applying the in-medium SRG treatment of the nucleonic interaction and operator based
on the chiral effective field theory (YEFT) [46]. Roles of the CP in the quenching have been
manifested from a microscopic standpoint, and corrections from the meson-exchange current
(MEC) have been argued.

As well as the moments, M1 and Gamow-Teller (GT) excitations are subject to the
quenching of the spin matrix elements [39, 40]. Under an appropriate condition, nuclear
reactions pick up the spin d.o.f., possessing rates proportional to the M1 or GT excitations.
The dominant role of the CP in the quenching has been supported by the nuclear reaction
experiments [47]. It has also been suggested that the quenching occurs in the isovector
component, leaving the isoscalar component almost unquenched [48].

In nucleonic interactions, spin-dependence partly originates from the central channel in
the one-pion exchange potential (OPEP). The OPEP channel is not explicitly included in
most SCMF calculations, although some of its effects might be substituted in other forms. It
deserves investigating the spin-dependent channels of effective interaction in connection with
the OPEP. There is no doubt that the tensor force is contained in the nucleonic interaction,

whose substantial part also originates from the pion exchange. While the tensor force is not
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explicitly included in the usual SCMF calculations, there have been some SCMF approaches
in which the tensor force is incorporated [49-56]. The tensor force affects the interaction
between nucleons on specific orbits, and this effect gives rise to Z- and N-dependence of the
shell structure [3, 8, 51, 52, 55, 57-59]. Indeed, the prediction of magic numbers is greatly
improved by incorporating a realistic tensor force into the effective interaction [8]. As the
tensor force influences spin properties of nuclei, it is of interest to investigate the effects of the
realistic tensor force on the quenching in the M1 moments. Because the contribution of the
tensor force vanishes in homogeneous nuclear matter, it is vital to separate the tensor-force
effects on the properties of finite nuclei from those of the central channels when extrapolating

spin properties on Earth to astrophysical environments.

One of the authors (H.N.) has developed effective interactions for SCMF approaches [56,
60] by modifying the Michigan-three-range-Yukawa (M3Y) interaction [61, 62]. The M3Y
interaction was originally obtained from the G-matrix. In the M3Y-Pn interactions, where n
is an integer specifying the parameter-set, density-dependent terms are added to reproduce
the saturation, and the values of several parameters are phenomenologically modified. In
the M3Y-P6 interaction [63], the central channel of OPEP and the tensor force derived
from the G-matrix are kept unchanged with no phenomenological modification. With the
inclusion of these spin-isospin and tensor forces, the M3Y-P6 interaction provides a good
description of the nuclear magic numbers up to the Z- and N-dependence [8, 56|, and the
s.p. potential up to as high as &~ 80 MeV [13]. The tensor force in M3Y-P6 is scrutinized
in the N-dependence of the s.p. level spacing between p0Ods, and pls;;, from 40Ca to
Ca [56, 58]. The significance of the tensor force in the M1 excitations has been shown
for the M1 excitations at 2**Pb [64]. The connection to bare nucleonic interaction and
the reasonable agreement with available data supply a good reason to regard this effective
interaction as a semi-realistic one. In particular, the spin-isospin and tensor channels are
considered realistic. In this work, we apply the M3Y-P6 interaction to the M1 moments

adjacent to the doubly-magic nuclei.

For comparison, we also employ the Gogny-D18S interaction [65]. Successfully describing
many nuclear properties, it is one of the standard phenomenological SCMF interactions and
is useful to inspect the roles of the realistic spin-isospin and tensor forces. Comparison is

also made with the results given in Refs. [37] and [46].
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II. THEORETICAL BACKGROUNDS AND NUMERICAL SETUPS

A. Symmetries in mean-field calculations

The total angular momentum J is a half-integer in odd-A nuclei. Therefore, it is impossi-
ble to keep the T-symmetry with a single pure state |®), because T?|®) = —|®) and thereby
T|®) is necessarily orthogonal to |®). The T-symmetry should be broken through the spin
d.o.f., supplying a good opportunity to investigate spin properties. However, computations
without imposing 7-symmetry are often demanding, particularly when the semi-realistic in-
teractions are applied. On the other hand, it is expected that the spherical symmetry is not
severely broken in the nuclei neighboring the doubly-magic core. To reduce computational
cost, it is reasonable to take into account symmetry breaking to a minimal extent. We here
assume the axial symmetry under which the z-component of the total angular momentum
(J) is conserved, the parity (P) symmetry, and the symmetry with respect to the product
of R and T, where R (:= e~™’) denotes the reflection, as discussed in Appendix A. Note
that, because (RT)?|®) = |®) [4], the RT-symmetry or RPT-symmetry can be imposed
even when the 7-symmetry is violated. Under the phase convention adopted here, we have

(RPT)|®) = |D).

B. Setups for mean-field calculations

We carry out Hartree-Fock (HF') calculations using the M3Y-P6 interaction, employing
the Gaussian expansion method (GEM) [66-68]. The basis functions are given in Ref. [68].
As deformation gives rise to mixing of the orbital angular momentum ¢ in the s.p. states,
the space is truncated by its maximum value f¢.

The computer code has been newly extended for mean-field calculations assuming the J,,
P and R7T symmetries, by which the spin d.o.f. can be active. Although the present study
is limited to the HF results, the code has been adapted to the Hartree-Fock-Bogoliubov
calculations, as discussed in Appendix B. The convergence for /., against deformation has
been inspected in Ref. [68]. The code adopts l.,, = 7 as a default value. The nuclei under
investigation do not gain strong deformation, as will be confirmed from the @), values shown
in Sec. III C, and /. = 7 is sufficient for the N < 51 nuclei. For the N > 81 nuclei, we

adopt f.,; = 8 to take care of an s.p. state dominated by the 0i component, in which the



= 8 component may be admixed to some extent.
For the odd-A nuclei under investigation, several states having different J, values lie with
close energies, which correspond to magnetic substates. We compute all these states and

adopt the state with the lowest energy among them.

C. Magnetic dipole moments

The nuclear M1 moment operator is,
,uél) = Z Z (9o iz + gor 8i2) (1)
T=p,n 1ET

where we denote orbital and spin angular momenta of the i-th nucleon by £; and s;. The s.p.
g-factors on Eq. (1) are gop = 1, go, = 0, and g5, = 2p, with the measured M1 moment
of a single nucleon s, [69]. In the energy eigenstate of the 4Z nuclide ‘\If sm(*2)), the total
angular momentum J is a good quantum number. At the g.s.’s of odd-A nuclei, J # 0
and its magnetic substates labeled by M are degenerate. The expectation value of ugl) at

}\If Az )> linearly depends on M, owing to the Wigner-Eckart theorem,

. A U,(A2)||pW|| v, (42
s 12)) = LENEAECD) g 01
L (W) |n 9, (2))
VIJ+1DRT+1)

The M1 moment is defined for the M = J state,

WAZ) = (U Z) | |9, 2))

J AL Ol (A ()
e (w2 o0 2).

Instead of computing the reduced matrix element, Eq. (3) can be rewritten as
(Wi (A 2) 6" [V 501 (12))
(Vo (A2)| L)W (AZ))

with the J, operator on the denominator of the rhs given by

Jz - Z (gz,z + Si,z) . (5)

(2

wz)=1J

In the SCMF solution |®(42)), in which the full rotational symmetry is spontaneously

broken, degeneracy with respect to M is lost and we choose the state having the lowest
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energy among them. Within the context of the KS theory, (®(*2)| uél) |®(“Z)) corresponds
to the M1 moment of the g.s. if the M1 moment belongs to principal variables, even
though the wave function |(I>(AZ )> is not completely physical. However, to compare it with
the experimental data of Eq. (3), a prescription is necessary in order to match the M-
dependence. Applying Eq. (4) to the SCMF solution, we calculate the M1 moment within

the SCMF,

(2(12) |y |2(*2)) -
(O(AZ)|L.|2(A2))

For the J value on the rhs of Eq. (6), we insert the J value of the observed g.s. (or of the

WM(AZ) =

metastable state).
In contrast to the KS theory, the wave function ‘@(AZ )> is respected in the conventional
interpretation of the SCMF theory. Then, as J should be a good quantum number in
the energy eigenstates, the J-projected state is considered to correspond to the eigenstate,
}\PJM(AZ)> x PJM|CI>(AZ)>, where Py is the angular-momentum-projection operator. The
M1 moment calculated with the projected state is
(2(*2)| Py i Prav |2(*2))
(O(AZ)|Pya J. Pin|®(A2))

e (A7) = 7)

However, J-projection requires a demanding and careful computation, particularly for odd-
A nuclei. Whereas a code for the g.s.’s of even-even nuclei has been developed [70], no
J-projection code is available for the SCMF solutions in odd-A nuclei associated with the
GEM at this moment. It is a delicate question that should depend on the input, i.e.,
effective interaction or EF, which of the pictures relying on the wave function or the picture
provided by the KS theory is suitable. In the vicinity of the doubly-magic core, the breaking
of the J quantum number is not quite serious. As will be shown in Sec. III B, we have
pME(AZ) = pProi-(AZ). Tt allows us to postpone, for the time being, answering which picture
is appropriate for the present case.

For a state having one-particle or one-hole on top of the doubly-magic core without any
residual correlations, the orbit of the particle or hole determines the M1 moment because

the core has no contribution. This s.p. value is known as the Schmidt value [4],

s.p. N 9sr — Ger - 1
n (T;@)—J{ge,fi—zul} (J IZiZ)- (8)

Even in the nuclei adjacent to the doubly-magic core, the measured M1 moments deviate

from p*P (7, £j) in practice. We shall mainly discuss displacement of the measured (")
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and calculated M1 moments from p*? (7, £j), defining

A1 Z) = (M Z) =y (1, 4j) - (9)

To be precise, the center-of-mass (c.m.) motion is desirable to be removed in the orbital

angular momentum £; in Egs. (1) and (5) with replacing ¢; by £}, where
G =xixpl; ¥=r,—R, p=pi—o, Ri=~3'r,, P:=Yp..  (10)
7 7 1 7 ? ) 7 ? A ) . A i 2 . i 7

We have confirmed that this c.m. correction is negligibly small. In relation to the deviation
from p*?, the influences of the MEC and the isobar (e.g., A-h) excitation have been argued.

We neglect them, yielding a brief discussion on this point in Sec. IV.

D. Electric quadrupole moments

While the main subject of this paper is the M1 moment, the quadrupole moments also
carry useful information about the s.p. nature of the nuclei neighboring the doubly-magic

core. The quadrupole operator is given as

167 ~
Qi =1 DY), (1)

Here and in the following, » = |r| and t = r/r. The electric quadrupole (£2) moment is

eQp(*Z) : = (U 15(* 2)| Q| W 1(* 2)

)
>(JJ20{JJ).

{(,(12)][eQ[|9,(*2) (12)
V2J+1
From the SCMF solution |®(47)), the E2 moments are calculated by
QY (AZ) = e (D(*2)|eQ)| 21 2)) . (13)

Since |®(17)) is selected as the lowest-energy state among several candidates having various
J, values, we have the factor ¢, on the rhs of Eq. (13), for which we adopt

32 —J(J+1)
3M2—J(J+1)’

M = (®("Z2)|J.|®("2)), (14)

Cpr =

as indicated by the Wigner-Eckart theorem. For J in ¢y, the value of the observed g.s. (or

of the metastable state) is inserted again.



Even when the doubly magic core is entirely spherical without polarization, the last
nucleon or hole produces a quadrupole moment. We take this s.p. value as a reference, since
the deviation from it suggests how much the core is polarized. The s.p. value of Q(472) is

expressed as

T iY@ (2)]145
Q*P (nlj) = i,/%(nfﬂﬂ\nﬁj)r < ﬂ%' J) (jj20 Uj) : (15)

To analytically estimate the radial matrix element (nfj|r?|nfj), in Eq. (15), we employ the
isotropic harmonic-oscillator wave-function with fuw = 41.2471/3MeV. The negative sign

on the rhs of Eq. (15) applies to single-hole states.

III. RESULTS
A. Spin properties of effective interactions in infinite nuclear matter

Before discussing the results of the M1 moments, we compare spin properties in the
nuclear matter provided by the currently used effective interactions or EF's.

We emphasize again that the M3Y-P6 interaction keeps the spin-isospin channel of the
OPEP, which we denote by V(()ggp, and that it has the tensor force VTN derived from the
G-matrix. In contrast, neither of V(gg%ap nor VM is explicitly included in most phenomeno-
logical interactions, e.g., D1S, although a part of their effects might be incorporated in an
effective manner.

The spin properties predicted by each effective interaction are typically expressed in terms
of the Landau-Migdal parameters. We compare the g, and g, values for ¢ = 0,1 obtained
from M3Y-P6 and D1S [60] in Table I. Whereas experimental information is limited, the
data on the GT transition suggest gj ~ 1 [71, 72]'. Tt seems that D1S gives too small gj.
In the M3Y case, g seems consistent with the data, to which Véggp yields an important
contribution [60].

UNEDF1 does not originally contain spin-dependent channels. In Ref. [37], simple terms
corresponding to the delta interaction have been added to the spin-dependent channels,

whose strengths are determined in terms of the Landau-Migdal parameter go and gj. For

L In Refs. [71, 72], the ¢’ values are measured in the unit (f,/m,)?, which should be scaled by a factor of

2.6M§ /M ~ 1.8 when comparing with the normal values, where M} is the k-mass at the Fermi momentum.
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TABLE I. Comparison of Landau-Migdal parameters gy and g, (¢ = 0,1) at the saturation point

among effective interactions and EFs. The values for UNEDF1 are those adopted in Ref. [37].

M3Y-P6 D1S UNEDF1

90 0.272 0.466 0.4
g1 0.231 —0.184 0.0

9 0.970 0.631 1.7
g 0.157 0.610 0.0

the isoscalar term, gy = 0.4 is imposed. The M1 moments significantly depend on the spin-
isospin interaction. Utilizing this dependence, g is adjusted to the M1 moments, and the
value 1.7 is adopted 2. These gy and g values used together with UNEDF1 in Ref. [37] are

also shown in Table 1.

B. Magnetic dipole moments

We first depict the Ay values in nuclei adjacent to *O and °Ca, in Fig. 1. In these nuclei,
the M1 moments hardly deviate from p*P within the lowest-order perturbation theory (see
Sec. IIIE), because of the ¢s-closure at 0 and “°Ca. Therefore, it is not surprising that
all the SCMF results yield negligibly small Ay. Although Ap is visible in the experimental
data near *°Ca, it still stays small.

In Fig. 2, we plot the A values in neighbors of the doubly-closed nuclei, in which one of
Z and N is an ¢s-closed and the other is a jj-closed magic number. It has been known that
N = 14 behaves like a magic number in the proton-deficient region, and 220 is analogous
to a doubly-magic nucleus. We add 2!O in Fig. 2 and compare the SCMF results with the
new data [74]. Figures 3 and 4 display the Au values near jj-closed nuclei, separating them
into odd-N and odd-Z ones. At '3!Sn, the data on the metastable state with (11/2) is
available, which corresponds to the neutron single-hole state (0hyy /2)*1 on top of ¥2Sn. It
is included in Fig. 3, labeled as '3'Sn™. The ratios Ap/Au®®- are also displayed in Figs. 2,

3 and 4. They elucidate how well the quenching is reproduced in individual calculations.

2 This g{, value is not incompatible with the data because UNEDF1 gives a large Mg (= M).
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FIG. 1. Ap values in nttédéi @&j&éyﬁ{ 13/2s-135e 22N T A des and spin-parities are shown at

the top and bottom of the figure. Red circles and blue triangles represent the present results with
M3Y-P6 and D1S, respectively. Skyblue diamonds and orange inverse triangles are the J-projected
results with D1S and UNEDF1 quoted from Ref. [37]. Green pluses are yEFT results of Ref. [46].

Experimental data are taken from Ref. [73] and shown by black crosses.

Let us first compare two types of D1S results, the present SCMF results (blue triangles)
and the J-projected results in Ref. [37] (skyblue diamonds). It is noted that the difference of
the results between Ref. [37] and the present work should be attributed to the J-projection
despite the difference in computational methods, as far as both are nearly convergent. Note
that J-projected results have not been reported for 21O, (7/2)* state of °'Sn, (3/2)* state
of 131Sn, and (5/2) state of Cu. We observe that the results are so close (pMF a2 pProl-).
It is appropriate to investigate p via the J-unprojected SCMF calculation, circumventing

the doctrinal discussion mentioned in Sec. 11 C.

The SCMF approach with D1S yields correct signs of Au (except for 2°7Pb), but the
degree is insufficient compared with the experimental data. With the M3Y-P6 semi-realistic
interaction, Ay values are almost always improved from the D1S case, though overshooting
in some nuclei and remaining insufficient in others. In the cases where D1S has already
reproduced the data well, so does M3Y-P6. The M3Y-P6 results are close to the yEFT re-
sults for the nuclei handled in Ref. [46]. It is commented that, compared with UNEDF1 plus
spin-dependent terms fitted to the data, M3Y-P6 yields comparable or even slightly better

agreement with the experiments. The source of the dependence of Au on the interaction
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FIG. 2. Upper panel: Ay values in nuclei adjacent to the doubly-magic nuclei, having £s-closed

Z and jj-closed N, and wice versa. See Fig. 1 for conventions. Experimental data are taken from
Refs. [73] and [74] (for 21O). Lower panel: Calculated Ay values relative to Ap®®-. Red and blue
bars are the current results with M3Y-P6 and D1S, respectively. The J-projected results with D1S

and UNEDF1 quoted from Ref. [37] are also presented by skyblue diamonds and orange inverse

triangles, for reference.

will be analyzed in the subsequent subsections.

C. Electric quadrupole moments

The deviation Ay reflects the CP, i.e., weak erosion of the doubly-magic core. It could be
induced by quadrupole deformation, in part. In this subsection, we examine the quadrupole

deformation predicted in the SCMF approach. Correlations due to the spin-dependent
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FIG. 3. Upper panel: X,u values (in odd—}\f nuclei adjacent to the jj-closed shell. See Fig. 1 for

other conventions. Experimental data are taken from Refs. [73, 75] and [76] (for '33Sn). Lower

panel: Calculated Ap values relative to Au®*P- when P is available. See Fig. 2 for conventions.

interaction may also be important for Ay, which will be discussed later.

The @), values in the nuclei near the doubly-magic core are depicted in Figs. 5, 6, 7 and
8. In practice, we plot @, divided by R? = (1.12 A3 fm)?, to reduce dependence on the
nuclear size. As seen in Fig. 5, the @, values for '"F, 3K and *'Sc, which are odd-Z nuclei
neighboring 1°0 and *°Ca, barely deviate from the s.p. values in both the experimental data
and the SCMF results. Consistent with Ay in Fig. 1, this outcome suggests that the erosion
of the magic core is not so strong as it is far beyond the perturbative regime, though not
negligible. Note that @,’s are presented as the s.p. values for the odd-N nuclei YO and
3941Ca, instead of @,’s. The measured and calculated @,’s are not vanishing, indicating CP,

though their absolute values are smaller than the s.p. values of @,,. It is confirmed that the
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FIG. 4. Upper panel: Ay values in odd-Z nuclei adjacent to the jj-closed shell. See Fig. 1 for

conventions. Experimental data are taken from Refs. [73, 75] and [44] (for '*'In). Lower panel:
Calculated Ap values relative to Au®P-. Green bars represent the yEFT results of Ref. [46]. See

Fig. 2 for other conventions.

SCMF calculations well reproduce the measured ), values both in the odd-Z and odd-N

nuclei.

In the odd-N nuclei shown in Fig. 6, 2'0, 4"%Ca, the SCMF results of ), reveal CP
effects, coincidentally close to the s.p. values of @,. A similar coincidence is found for
several nuclei in Fig. 7. The @, value is enhanced from the s.p. value in the odd-Z nuclei,
49Sc¢ in Fig. 6 and the nuclei in Fig. 8. We find good agreement of the SCMF results with
the available data. The present SCMF results with D1S and M3Y-P6 are close to each
other. Thus, it is reasonable to conclude that the SCMF calculations well describe the weak

quadrupole deformation of these nuclei, and the degree of deformation is not sensitive to
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FIG. 5. Q,/R? values in nu@/ogfd?@{g(j@_ @iﬁtgl@—@érﬂ@é values (Q,/R? for odd-N nuclei) are
shown by brown pluses. Other symbols are common to Fig. 1. Experimental data are taken from

Ref. [77].
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3b " DIS A
D1S (proj.) |
| UNEDF! (proj.) i

N M3Y-P6 O
<\/ sp. + ]
(\h:'_‘ 1 exp. X
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FIG. 6. Qp/ R? values in nuclei of ﬁzgf é?@ée“ﬁ“l)_g.(ngbr conventions. Experimental data are taken

from Refs. [77], [78] (for 474°Ca) and [79] (for 4°Sc).

the effective interactions.

D. Occupation numbers on individual (¢j) component

We next investigate occupation numbers on individual (£j) components, (N ;). At the
spherical limit, the occupation numbers are determined by those of the adjacent doubly-

magic core and the last nucleon, and we denote them by pr;;. Take neutron orbitals at
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FIG. 7. Q,/R? value¥'th (releRr F91/§2+37/(2(§T§7@§ (fé/lz)_s.(ﬂ.z)_\)@ﬁfés). See Fig. 5 for conventions.

Experimental data are taken from Refs. [77], [80] (for 31Sn™) and [76] (for 133Sn).
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FIG. 8. Q,/R? values in(Hhc16/Bf 11, 4 %Jééqi{é.(%zfgﬂé%;n?gﬁ{ions. Experimental data are taken
from Refs. [77] and [81] (for !33Sb).

41Ca as an example. We have N,Slf’shl/z = 4 because of the occupation of the 0s;/, and 151/,
orbits, NE?%/Q =4, NZ{)}?M =2, NZ?CZ/Q = 6, Nz,pfg/g =4, and NZ%’};/Q = 1 because of the last

neutron. Instead of the occupation numbers themselves, their difference from those at the
spherical limit, A(N; ;) := (N, 4) — Nf_%, will be plotted. |A(N, ;)| < 1 verifies that the
breaking of magicity stays weak.

Figures 9 and 10 depict A(N,4;) at *®Pb and '*'In, respectively. We do not find a
notable qualitative difference in other nuclei. At 2°°Pb, the last neutron occupies the 1gg /2

orbit at the spherical limit. We observe that it induces proton excitation from hj;/ to
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FIG. 9. A(N,,;) at 29Pbe e sl ydefivS with- MIY FEIH DIS are shown by red and blue

bars, respectively.

f7/2 both in the D1S and M3Y-P6 results. As these two orbits strongly couple under the
quadrupole field, they imply the relevance of the quadrupole deformation, even though it is
weak. Similar excitations relevant to quadrupole deformation are found on the neutron side
(41372 tO gos2) and at *'In (gg/2 to ds/o on the proton side and hqy/ to fr/2 on the neutron
side). In addition, we find sizable excitations to the neutron 11/ component at ***Pb and
the proton g7» component at '*!'In. They are £s partners of the high-j occupied orbits
of the doubly-magic cores, and the excitations exhibit correlation with respect to the spin
d.o.f. Though weaker, excitations to the ¢s partners are visible also on the proton (neutron)
side at 2Pb (!3'In). As discussed in Subsec. III E, these excitations trigger Ay within the

lowest-order perturbation.

It is noticed that excitations to the ¢s partners are always stronger in the M3Y-P6 results
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than in the D1S results, implying strong spin correlations in M3Y-P6. This difference in
A(N, ;) accounts for the interaction-dependence of Ap. It will be instructive to specify

which channel of the interaction gives rise to this difference.

E. Analysis via lowest-order perturbation

As long as the erosion of the doubly-magic core is not serious, analysis in terms of
the perturbation theory should be useful. Owing to its linear nature, the lowest-order
perturbation allows us to separate the contributions of each channel of the interaction.

In the lowest-order perturbation, Apu is expressed by the diagram of Fig. 11 and the
following equation [82],

h (7 G231 HW53V]5) |

€j2 — €j1

ApPt (A7) = =2 (Gm = j|ui” |5 Ga gt H D jm = (16)
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FIG. 11. Goldstone diagram for the lowest-order contribution ApPe® . V represents the interaction

and i the M1 operator.

Here |j) is the unperturbed state, which has a single particle or hole on the orbit j on
top of the doubly-magic core, and } § (i HW; 5 > is composed of the particle or hole on j
and the CP component (j,j; 1)), the excitation from j; to jo. For the operator u") to
act on, the polarization is restricted to the 1% spin-parity, and ApP* of Eq. (16) thereby
stands for CP due to the spin correlation. The coupling of the particle (or hole) on j to
(J271 1)(1) must result in J = j due to the angular-momentum conservation via V. All the
relevant s.p. energies (e;,, €;,) and functions are obtained by the SCMF calculations at
the doubly-magic nucleus. Note that <j m‘,uél) ‘j (jo iy MW, 4 m> is evaluated from the s.p.
matrix element (ji||xM][j2), and (j (j2ji")™;4|V]j) from the two-body elements of the
interaction (j 72|V'|7 j1)-

The perturbative picture well accounts for the reason why Apu is small near the £s-closed
nuclei, as shown in Fig. 1. Because the ™) operator in Eq. (1) does not change the orbital
angular momentum of the s.p. state, j; and js in the polarization component (js j; H
should be an /(s partner. The lowest-order term ApP®* in Eq. (16) requires occupied j;
and unoccupied js, which is forbidden at the ¢s-closed core. The smallness of measured Ay

around the £s-closed nuclei is evidence for the dominance of CP in Apu.

The SCMF results ApMF exhibit effects beyond ApP®t. For instance, the quadrupole
polarization like [(pl f7/2)(p0h1_11/2)] observed in Fig. 9 is distinguished from the (jj;")®
polarization. As discussed in Subsecs. III C and III D, M3Y-P6 and D1S are similar in the
quadrupole correlation but have difference in the spin correlation. We investigate through

ApPe which part of the interaction makes this difference.
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triangles. In ApP with M3Y-P6, hatched and filled areas display the contribution of VO((PZ%E)P and
V(TN

The ratio ApPe /ApME will provide a measure of how well ApPet approximates Au. We
adopt the ApMF values with M3Y-P6 as a reference. In Fig. 12, ApPet relative to ApM¥
with M3Y-P6 is depicted for the nuclei handled in Fig. 3. AuP®" with D18 is also presented
in terms of the ratio to Ap™M¥ with M3Y-P6. Deviation of ApP /ApM¥ from unity shows
that the perturbation of Eq. (16) is not sufficient for a fully quantitative evaluation of Apu. It
also holds for the results with D1S, as recognized by comparing the blue bars and triangles in
Fig. 12. Still, the deviation of AuPe™* from ApM¥ stays within a factor of two, and analysis
through ApPe* is useful for the present purpose.

Contributions of Véggp and V™) are assessed by inserting them into V' in Eq. (16), and
shown in Fig. 12. Although the effective interaction of the SCMF calculations affects the
s.p. energies €; as well as (V) in Eq. (16), it is more or less tuned so as to give reasonable s.p.
energies. We neglect the influence of the individual channel on ¢;, keeping €; obtained from
the full SCMF calculation. It is clearly seen that V(gggp substantially contributes to Ag,
as expected from its effects on the spin properties discussed in Sec. IITA. Whereas V(TN
affects Ap cooperatively with VC()%P, its effects are smaller than those of V(gg%EP; sizable for
some nuclei but not so for others. Concerning the tensor force, it is fair to remind that V(TN
affects the s.p. energies. While some of the effects may be incorporated into the central

channels, the explicit inclusion of V(™) is important in their Z- and N-dependence.
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Intriguingly, the summed contributions of Vég%ap and V(™) are close to the difference
of ApPe™t between M3Y-P6 and D1S. While the spin-dependent channels of the effective
interaction have been difficult to fix from a fully phenomenological standpoint, realistic
spin-isospin and tensor channels connected to the bare nucleonic interaction, particularly
the channel originating from the one-pion exchange, are helpful. The importance of the

pion exchange is harmonious with the YEFT picture.

IV. SUMMARY AND DISCUSSIONS

We have investigated magnetic dipole (M1) moments adjacent to doubly-magic nuclei
using self-consistent mean-field (SCMF) approaches. Hartree-Fock calculations assuming the
J, (axial), P (parity) and RT (R is the reflection with respect to the y-axis) symmetries, but
allowing the breaking of the T (time-reversal) symmetry, have been implemented with finite-
range interactions. No adjustable parameter is newly introduced. The M3Y-P6 interaction,
which keeps realistic spin-isospin and tensor channels, is primarily applied, and its results
are compared with those obtained from other interactions. The M1 moments deviate from
the Schmidt values, implying the quenching of the spin matrix elements. The source of the
deviation in the SCMF results has been analyzed via the quadrupole moments, occupation
numbers, and comparison with the results of the lowest-order perturbation.

The SCMF results with M3Y-P6 are in reasonable agreement with the measured M1
moments of nuclei neighboring the doubly-magic core. The deviation from the Schmidt
values is well described for the nuclei adjacent to jj-closed magicity, owing to the cooperative
effects of weak quadrupole deformation and spin correlation. Compared with the results of
D1S, which is one of the standard SCMF effective interactions, M3Y-P6 yields improvement
on almost all nuclei under investigation. The M3Y-P6 results are comparable to, or even
slightly better than, the UNEDF1 results of Ref. [37], whose spin-isospin channel was fitted
to the measured M1 moments. The SCMF results with M3Y-P6 are also close to the shell-
model results with the interaction derived from the chiral effective-field theory (yEFT) in
Ref. [46]. In comparison with the D18 results, the improvement can be attributed primarily
to the spin-isospin channel and secondarily to the tensor channel in M3Y-P6, which are
considered realistic and retain a microscopic origin. The UNEDF1 results suggest that a

central spin-isospin channel can express certain parts of these effects, even imitating some
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tensor-force effects. It is still noted that the distinction between the central and tensor

channels is vital when extrapolating the properties in an astrophysical environment.

Further consequences can be addressed. Good agreement of the D1S results without
the J-projection and those with the projection in Ref. [37] suggests that the SCMF wave-
functions may be used to describe M1 moments without handling additional rotational
correlations. This implies that the M1 moments can be a principal variable of the generalized
Kohn-Sham (KS) framework. In the results from yEFT [46], the meson-exchange current
(MEC) has improved the agreement with experimental data, which counteracts the CP in
most cases [39, 40, 46]. On the other hand, the coupling of the virtual isobar excitation to
the magnetic field has not been taken into account. Since these effects tend to cancel each
other [39, 40], though not completely, the M1 moments could be calculated by the one-body
operator of Eq. (1) to moderate precision. The results reported in Refs. [42-45] indicate
that the KS approach is promising to describe M1 moments in nuclei departing from the
doubly-magic core. However, it is not easy to completely fix the spin-dependent channels
of the effective interaction by fitting. The present work exemplifies that microscopic theory
could provide good guidance. Whereas the one-pion exchange is an important ingredient of
the central spin-isospin channel, there are few codes applicable to the Yukawa interaction,
with the exception of the code used in the present work [66-68]. Along this line, local
approximation based on the density-matrix expansion (DME) [83-85] has been applied to
the Fock term in, e.g., Ref. [86]. According to Ref. [87], the DME leads to errors of a
few to ten percent, which is moderately good but not excellent precision. It is desirable
to keep paying attention to the precision of the DME, particularly for the spin-dependent
channels [85].

Within the perturbation theory, the M1 moments near the ¢s-closed nuclei hardly devi-
ate from the Schmidt values at the lowest order, although the higher-order terms are not
necessarily negligible [39, 40, 88]. While the present SCMF results are consistent with the
weak quenching in vicinity of the £s-closure, they fail to describe the measured Ay values
precisely, as seen for 4'Ca, 3°K and *'Sc in Fig. 1. In vicinity of the jj-closure, apparent dis-
crepancy exists at the Z = odd nuclei *3Sb, 2°"Ti and 2%Bi, while agreement is remarkable
at 131Sn™, 13381 and 2°Pb. We note that the yEFT results also deviate from the data at the
above Z = odd nuclei [46]. At 2%Bi, it has been shown that the MEC could exceptionally

facilitate quenching [40, 41, 46]. It would be of interest to incorporate corrections due to
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the MEC, which are represented by two-body operators [89, 90], and isobar excitations into
the SCMF calculations of M1 moments at some nuclei, e.g., 2°Bi, though it is beyond the

scope of the present work.

Appendix A: Relation of time-reversality to other symmetries in one-body fields

Symmetries concerning the rotation may restrict the effect of the time-reversality (i.e.,
T-symmetry). In this Appendix, we discuss the relations of the 7-symmetry to the spherical
(J) or axial (.J,), parity (P), and reflection (R) symmetries in terms of the one-body density
matrix, particularly in the spherical-basis representation. The argument in this Appendix
serves as one of the grounds for the numerical calculations in the present work. The self-
consistent symmetries were minutely investigated for the local densities and currents in
Ref. [91]. In contrast, our discussion is not constrained to local fields and may be transparent
in specific cases.

The mean fields are represented by the one-body density matrix ggp (:= (@|c£,ck|¢>) and
the pairing tensor kg (:= (P|cpck|P)), in general. Here, k and &’ denote the s.p. bases, and
¢l (¢x) is the corresponding creation (annihilation) operator. Symmetries in the mean fields
are nothing but those in ggr and kg. Note that g is hermitian (i.e., gp = 05)) and
Kk 1s skew-symmetric (i.e., kKpp = —Kpr ). We restrict ourselves here to the symmetries
in gpr; those in kg can be discussed analogously. Adopting the spherical bases, we take
k = (v€jm), where ¢, j and m are the orbital angular momentum, the summed angular
momentum and its z-component, respectively. The label v distinguishes the radial wave
functions. We do not consider proton-neutron mixing in the s.p. states, and omit the
isospin index for the sake of simplicity. By using the s.p. basis function ¢ (ro), where o is

the spin index, ggp is readily transformed to the coordinate representation o(ro,r’c’),
_ 3 3,./ i * /1
Ok _Z/d rd’r o(ro,r'o") ¢p(ro) ¢p (r'c’) . (A1)

The time-reversed state of k is denoted by k. In the concrete, k is (v€j — m) with an
appropriate phase, for which we use the convention (—)/™™. Namely, the s.p. bases are
RPT-invariant. The T-symmetry in the mean-fields is recognized as,

T-symmetry: opp = Opp - (A2)
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The complex conjugate on the rhs is a result of the 7 operation on the transformation
coefficients of the s.p. states [e.g., U and V in Eq. (B1)].
Under the J-symmetry, g is diagonal with respect to 7 and m, and has no dependence
on m,
Ok = 0551 Oy Ql(,jz),y'é/ : (A3)
The R-symmetry plays no additional roles in this case. Equation (A2) is reduced to, applying

the present phase convention,
(J + T )-symmetry : (—)K_Kl Ql(i,)’y,z, = Q%Zw : (A4)

We usually have P-symmetry when we maintain spherical symmetry. Then, g is also

diagonal with respect to ¢, and Eq. (A3) reads,

Ok = 055000 Orpmyy Q,(,g,j) : (AD)
The condition of the T-symmetry (A2) becomes
(J +P + T)-symmetry : Q(V@ = g(ff) : (A6)

Equation (A6) indicates, since v is the label for the radial part of the s.p. basis, that
the violation of the 7-symmetry may take place only through the off-diagonal element
with respect to the radial part, irrelevant to the angular-spin part. It is not a surprising
consequence since the (J + P)-symmetry fixes the angular-spin part of the s.p. states.

Under the J,-symmetry, gpi is diagonal with respect to m but not necessarily to 7,

Okk’ = 5mm’ Ql(/?j),l//@'j/ . (A?)
Equation (A2) is reduced to,
(J, + T)-symmetry : (_)J#Efj/,f/ Q;ﬁ)’é’j’ _ QSZ),V’ it (A8)

If we have the P-symmetry in addition, Eq. (A8) leads to

(m)*

(J. + P+ T)-symmetry: (=)~ Ql(/;jrj;bj)’[’j’ = Qugje (A9)

When we have the R-symmetry, even without the P-symmetry, the density matrix in

Eq. (A7) should satisty,
(m)

(JZ + R)—Symmetl"y: (_)]_j/ Ql(jz;j:/)/g/j/ = QV@j,V’f/j’ . (AlO)
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The RT-symmetry rather than the individual R or 7 symmetry yields
(J. + RT)-symmetry: (—)~* Q,(/Z)V,Z, . Q%)’l,,g,j, : (A11)
and the RPT-symmetry derives

(J. + RPT)-symmetry: o0,y = 0. (A12)

Appendix B: Mean-field equation under J, conservation

While the Hartree-Fock calculations have been applied in the present work, in this Ap-
pendix we derive the mean-field equation in a more general respect; namely, the Hartree-
Fock-Bogoliubov (HFB) equation. The creation and annihilation operators associated with

the s.p. basis ¢, are denoted by cf and c,¢jm. We define the modified annihilation

véim

operator as Cypjm = (—) ™ cypj_pm as in Ref. [67]. Under the J, conservation, the Bogoliubov

transformation is given by

ajz,m Z [UVKJ n Vﬁjm + ( )]+m VV(Z_]?:Z éyéjm] . (Bl)

vl

The density matrix and the pairing tensor are then expressed by
(m) yEmy(-m) yemx
QVTZ Iy Z E]": ’Z’Zn n? 112] vyt Z Ej,m ’E’] n? (B2)
having the following properties,

(m) _(m)x (=m) _ (m)
Ovrorjt vej = Cugivrerjr s Furpjrve; = “Rygj e - (B3)

It is found that the HFB Hamiltonian has the structure as

h(m) 0 0 A™)
0 h(=m)  A(=m) 0
U = : (B4)
0 —Ame _pm g
—AC™) 0 0 h(=m)*
leading to the HFB equation as
) yim) y(=m)x _ yim \(=m)x diag[e™)] 0 .
V(m) y=m)+ V(m) yl=m) 0 —diag[s-m™] ]
(B5)
/ h(m) A(m)
H' =
—A( —h(=m)x



From the total energy of the system E represented by (o, s, £*), h™ is defined by the deriva-
tive of E with respect to o, and A™ by the derivative with respect to x*. Corresponding
to Eq. (B3), we have (™7 = h(m* and AC™T = — Al assuring H' to be hermitian. It
is remarked that dim(#') = 1dim(#) and Eq. (B5) yields all the eigensolutions without
doubling, even in the HFB framework. Its origin is the property of the pairing tensor in
Eq. (B3), which connects the matrices for —m with those for m, leading to the structure of
‘H shown in Eq. (B4). Whereas we do not necessarily impose orthogonality for the radial
part of s.p. bases [66-68], we write down Eq. (B5) for orthogonal bases. The norm matrix
should be supplemented for non-orthogonal bases [67].

When we have P-conservation, Eq. (B5) is separable into sectors of individual parities.
Since we adopt the RPT -invariant basis functions here, we can restrict all the matrices U,
V, h and A to be real numbers under the RP7T symmetry, as realized in Eq. (A12). The

computer code has been developed accordingly, and is planned to be published in the near

future.
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