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Abstract

Magnetic dipole (M1) moments in nuclei neighboring the doubly-magic core are investigated by

the self-consistent mean-field (SCMF) approaches that allow for the breaking of the time-reversal

symmetry. By the SCMF calculations with the M3Y-P6 interaction, which keeps realistic spin-

isospin and tensor channels, the M1 moments are well reproduced, particularly those in the nuclei

adjacent to jj-closed magicity. The results are in better agreement with the data than those with

the Gogny-D1S interaction, slightly better than those of UNEDF1 supplemented by a spin-isospin

channel adjusted to the M1 moments themselves, and comparable to the shell-model results with

the chiral effective-field-theory (χEFT) interaction. Analyses via quadrupole moments, occupation

numbers and the lowest-order perturbation theory elucidate the cooperative effects of quadrupole

deformation and spin correlation on the displacement from the Schmidt values, which has been

known in terms of the quenching of the spin matrix elements. It is shown that a significant portion

of the spin correlation is carried by the spin-isospin and tensor channels in the effective interaction.

However, while agreement is remarkable at 131Snm, 133Sn and 209Pb, discrepancies remain at the

Z = odd nuclei 133Sb, 207Ti and 209Bi, as in the χEFT-based shell-model results.

I. INTRODUCTION

Nucleon’s spin plays specific roles in nuclear structure. Its coupling to the orbital angular

momentum yields the spin-orbit (ℓs) splitting of the single-particle (s.p.) levels, which is

a source of the magic numbers associated with the so-called jj-closed shell [1]. The ℓs

splitting significantly depends on the proton (Z) and neutron (N) numbers, giving rise to

the appearance and disappearance of the magic numbers in nuclei far from β-stability [2, 3].

Moreover, nuclear weak processes, e.g., β-decay, double-β-decay, and neutrino scattering,

often occur through the spin degrees of freedom (d.o.f.) [1, 4–6]. Because of its relevance to

astrophysics and fundamental physics, understanding and proper treatment of nucleon spin

are highly desirable.

The self-consistent mean-field (SCMF) theory provides a promising framework for de-

scribing nuclear properties ranging from stable to unstable and from light to heavy nuclei

in a unified manner. In practice, it has the ability to reproduce and predict nuclear magic
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numbers all over the nuclear chart from scratch [7, 8]. The SCMF theory connects the prop-

erties of finite nuclei to those of infinite nuclear matter, making the best use of experiments

on Earth to predict nuclear properties in astrophysical environments, such as neutron stars.

This advantage can hold for the spin properties, as far as they are well examined in finite

nuclei. Furthermore, while the SCMF theory is suitable for describing the lowest-energy

states, such as ground state (g.s.), intrinsic state of ground rotational band, and isomeric

state, it is straightforwardly extended to excitations via the random-phase approximation

(RPA) [9–11] and nuclear scattering via the folding model [12, 13]. The SCMF theory

also supplies a basis of extended approaches; the generator-coordinate method [14, 15],

the particle-vibration-coupling model [16, 17], the subtracted second RPA [18], the time-

dependent density-matrix theory [19, 20], the hybrid configuration mixing model [21], and

so forth. There have been arguments for reinterpreting the nuclear SCMF theory in terms of

density-functional theory (DFT) [22–24]. The SCMF equations have the identical form to the

Kohn-Sham (KS) [25] or Kohn-Sham–Bogoliubov-de Gennes equation [26]. The so-called ab

initio approaches have progressed, in which many-body correlations are taken into account

using the coupled-cluster method [27], the self-consistent Green’s function method [28, 29],

the similarity-renormalization-group (SRG) method [30], and others. The KS theory may

conceptually be an alternative approach to them, which takes account of many-body cor-

relations in the energy functional (EF). The KS theory may be extended so that principal

variables could be constituted by a class of physical quantities represented by the one-body

density matrix, whether it contains ρ(r) or not [31]. It seems sensible to identify the nuclear

SCMF theory, which could cover the spin properties, with the (generalized) KS theory for

nuclei, though we keep referring to it as SCMF theory in this paper to avoid confusion.

The SCMF theory needs an effective interaction as its input, which encompasses the ef-

fects of many-body correlations and corresponds to the EF of the KS theory. It is never a

trivial task to establish the effective interaction or EF. A popular method is fitting parame-

ters to measured quantities with respect to nuclear structure [32, 33], after assuming the form

of EF, typically the Skyrme form. However, since the spin d.o.f. tend to be masked as an

effect of the Pauli principle and nucleonic interaction, it is not easy to fix the spin-dependent

channels via fitting [32, 33]. As the spin operator is not invariant under the time-reversal

transformation T , this problem is related to the T -symmetry in the mean field [34–37]. The

T -symmetry usually holds in the g.s.’s of even-even nuclei. The spin properties are more
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visible in odd nuclei or proper excitations. It should be kept in mind that the non-central

channels in the interaction may significantly influence the spin properties of finite nuclei.

The magnetic dipole (M1) moment is an observable sensitive to spin. In particular, those

of nuclei neighboring the doubly-magic core supply a good testing ground for the theoretical

description of the spin properties. For the single-particle or single-hole states, the M1

moments are governed by the orbital of the last nucleon [1, 4, 38], reaching the Schmidt values

[see Eq. (8)]. However, the measured M1 moments sizably deviate from the Schmidt values

in most nuclei [38], implicating quenching of the spin matrix elements. By microscopically

investigating various effects in the perturbation theory, the main source of quenching has

been attributed to core polarization (CP) [39–41], after a history of disputes. Thus, the

degree of quenching reflects the stiffness of the doubly-magic core, and is influenced by spin-

dependent channels of the interaction. As the M1 moment is basically represented by the

one-body density matrix, it can be taken as a principal variable of the KS approach. In this

context, it has been shown that deformation and T -symmetry breaking cooperatively induce

moderate quenching [34–37]. The approach has been extended to open-shell nuclei [42–45].

The M1 moments in the vicinity of the doubly-magic nuclei have also been investigated

by applying the in-medium SRG treatment of the nucleonic interaction and operator based

on the chiral effective field theory (χEFT) [46]. Roles of the CP in the quenching have been

manifested from a microscopic standpoint, and corrections from the meson-exchange current

(MEC) have been argued.

As well as the moments, M1 and Gamow-Teller (GT) excitations are subject to the

quenching of the spin matrix elements [39, 40]. Under an appropriate condition, nuclear

reactions pick up the spin d.o.f., possessing rates proportional to the M1 or GT excitations.

The dominant role of the CP in the quenching has been supported by the nuclear reaction

experiments [47]. It has also been suggested that the quenching occurs in the isovector

component, leaving the isoscalar component almost unquenched [48].

In nucleonic interactions, spin-dependence partly originates from the central channel in

the one-pion exchange potential (OPEP). The OPEP channel is not explicitly included in

most SCMF calculations, although some of its effects might be substituted in other forms. It

deserves investigating the spin-dependent channels of effective interaction in connection with

the OPEP. There is no doubt that the tensor force is contained in the nucleonic interaction,

whose substantial part also originates from the pion exchange. While the tensor force is not
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explicitly included in the usual SCMF calculations, there have been some SCMF approaches

in which the tensor force is incorporated [49–56]. The tensor force affects the interaction

between nucleons on specific orbits, and this effect gives rise to Z- and N -dependence of the

shell structure [3, 8, 51, 52, 55, 57–59]. Indeed, the prediction of magic numbers is greatly

improved by incorporating a realistic tensor force into the effective interaction [8]. As the

tensor force influences spin properties of nuclei, it is of interest to investigate the effects of the

realistic tensor force on the quenching in the M1 moments. Because the contribution of the

tensor force vanishes in homogeneous nuclear matter, it is vital to separate the tensor-force

effects on the properties of finite nuclei from those of the central channels when extrapolating

spin properties on Earth to astrophysical environments.

One of the authors (H.N.) has developed effective interactions for SCMF approaches [56,

60] by modifying the Michigan-three-range-Yukawa (M3Y) interaction [61, 62]. The M3Y

interaction was originally obtained from the G-matrix. In the M3Y-Pn interactions, where n

is an integer specifying the parameter-set, density-dependent terms are added to reproduce

the saturation, and the values of several parameters are phenomenologically modified. In

the M3Y-P6 interaction [63], the central channel of OPEP and the tensor force derived

from the G-matrix are kept unchanged with no phenomenological modification. With the

inclusion of these spin-isospin and tensor forces, the M3Y-P6 interaction provides a good

description of the nuclear magic numbers up to the Z- and N -dependence [8, 56], and the

s.p. potential up to as high as ≈ 80MeV [13]. The tensor force in M3Y-P6 is scrutinized

in the N -dependence of the s.p. level spacing between p0d3/2 and p1s1/2 from 40Ca to

48Ca [56, 58]. The significance of the tensor force in the M1 excitations has been shown

for the M1 excitations at 208Pb [64]. The connection to bare nucleonic interaction and

the reasonable agreement with available data supply a good reason to regard this effective

interaction as a semi-realistic one. In particular, the spin-isospin and tensor channels are

considered realistic. In this work, we apply the M3Y-P6 interaction to the M1 moments

adjacent to the doubly-magic nuclei.

For comparison, we also employ the Gogny-D1S interaction [65]. Successfully describing

many nuclear properties, it is one of the standard phenomenological SCMF interactions and

is useful to inspect the roles of the realistic spin-isospin and tensor forces. Comparison is

also made with the results given in Refs. [37] and [46].
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II. THEORETICAL BACKGROUNDS AND NUMERICAL SETUPS

A. Symmetries in mean-field calculations

The total angular momentum J is a half-integer in odd-A nuclei. Therefore, it is impossi-

ble to keep the T -symmetry with a single pure state |Φ⟩, because T 2|Φ⟩ = −|Φ⟩ and thereby

T |Φ⟩ is necessarily orthogonal to |Φ⟩. The T -symmetry should be broken through the spin

d.o.f., supplying a good opportunity to investigate spin properties. However, computations

without imposing T -symmetry are often demanding, particularly when the semi-realistic in-

teractions are applied. On the other hand, it is expected that the spherical symmetry is not

severely broken in the nuclei neighboring the doubly-magic core. To reduce computational

cost, it is reasonable to take into account symmetry breaking to a minimal extent. We here

assume the axial symmetry under which the z-component of the total angular momentum

(Jz) is conserved, the parity (P) symmetry, and the symmetry with respect to the product

of R and T , where R (:= e−iπJy) denotes the reflection, as discussed in Appendix A. Note

that, because (RT )2|Φ⟩ = |Φ⟩ [4], the RT -symmetry or RPT -symmetry can be imposed

even when the T -symmetry is violated. Under the phase convention adopted here, we have

(RPT )|Φ⟩ = |Φ⟩.

B. Setups for mean-field calculations

We carry out Hartree-Fock (HF) calculations using the M3Y-P6 interaction, employing

the Gaussian expansion method (GEM) [66–68]. The basis functions are given in Ref. [68].

As deformation gives rise to mixing of the orbital angular momentum ℓ in the s.p. states,

the space is truncated by its maximum value ℓcut.

The computer code has been newly extended for mean-field calculations assuming the Jz,

P and RT symmetries, by which the spin d.o.f. can be active. Although the present study

is limited to the HF results, the code has been adapted to the Hartree-Fock-Bogoliubov

calculations, as discussed in Appendix B. The convergence for ℓcut against deformation has

been inspected in Ref. [68]. The code adopts ℓcut = 7 as a default value. The nuclei under

investigation do not gain strong deformation, as will be confirmed from the Qp values shown

in Sec. III C, and ℓcut = 7 is sufficient for the N ≤ 51 nuclei. For the N ≥ 81 nuclei, we

adopt ℓcut = 8 to take care of an s.p. state dominated by the 0i component, in which the
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ℓ = 8 component may be admixed to some extent.

For the odd-A nuclei under investigation, several states having different Jz values lie with

close energies, which correspond to magnetic substates. We compute all these states and

adopt the state with the lowest energy among them.

C. Magnetic dipole moments

The nuclear M1 moment operator is,

µ
(1)
0 =

∑
τ=p,n

∑
i∈τ

(
gℓ,τ ℓi,z + gs,τ si,z

)
, (1)

where we denote orbital and spin angular momenta of the i-th nucleon by ℓi and si. The s.p.

g-factors on Eq. (1) are gℓ,p = 1, gℓ,n = 0, and gs,τ = 2µτ with the measured M1 moment

of a single nucleon µτ [69]. In the energy eigenstate of the AZ nuclide
∣∣ΨJM(AZ)

〉
, the total

angular momentum J is a good quantum number. At the g.s.’s of odd-A nuclei, J ̸= 0

and its magnetic substates labeled by M are degenerate. The expectation value of µ
(1)
0 at∣∣ΨJM(AZ)

〉
linearly depends on M , owing to the Wigner-Eckart theorem,

〈
ΨJM(AZ)

∣∣µ(1)
0

∣∣ΨJM(AZ)
〉
=

〈
ΨJ(

AZ)
∣∣∣∣µ(1)

∣∣∣∣ΨJ(
AZ)

〉
√
2J + 1

(
J M 1 0

∣∣J M
)

= M

〈
ΨJ(

AZ)
∣∣∣∣µ(1)

∣∣∣∣ΨJ(
AZ)

〉√
J(J + 1)(2J + 1)

.

(2)

The M1 moment is defined for the M = J state,

µ(AZ) : =
〈
ΨJJ(

AZ)
∣∣µ(1)

0

∣∣ΨJJ(
AZ)

〉
=

√
J

(J + 1)(2J + 1)

〈
ΨJ(

AZ)
∣∣∣∣µ(1)

∣∣∣∣ΨJ(
AZ)

〉
.

(3)

Instead of computing the reduced matrix element, Eq. (3) can be rewritten as

µ(AZ) = J

〈
ΨJM(AZ)

∣∣µ(1)
0

∣∣ΨJM(AZ)
〉〈

ΨJM(AZ)
∣∣Jz∣∣ΨJM(AZ)

〉 , (4)

with the Jz operator on the denominator of the rhs given by

Jz =
∑
i

(
ℓi,z + si,z

)
. (5)

In the SCMF solution |Φ(AZ)⟩, in which the full rotational symmetry is spontaneously

broken, degeneracy with respect to M is lost and we choose the state having the lowest
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energy among them. Within the context of the KS theory,
〈
Φ(AZ)

∣∣µ(1)
0

∣∣Φ(AZ)〉 corresponds

to the M1 moment of the g.s. if the M1 moment belongs to principal variables, even

though the wave function
∣∣Φ(AZ)〉 is not completely physical. However, to compare it with

the experimental data of Eq. (3), a prescription is necessary in order to match the M -

dependence. Applying Eq. (4) to the SCMF solution, we calculate the M1 moment within

the SCMF,

µMF(AZ) = J

〈
Φ(AZ)

∣∣µ(1)
0

∣∣Φ(AZ)〉〈
Φ(AZ)

∣∣Jz∣∣Φ(AZ)〉 . (6)

For the J value on the rhs of Eq. (6), we insert the J value of the observed g.s. (or of the

metastable state).

In contrast to the KS theory, the wave function
∣∣Φ(AZ)〉 is respected in the conventional

interpretation of the SCMF theory. Then, as J should be a good quantum number in

the energy eigenstates, the J-projected state is considered to correspond to the eigenstate,∣∣ΨJM(AZ)
〉
∝ PJM

∣∣Φ(AZ)〉, where PJM is the angular-momentum-projection operator. The

M1 moment calculated with the projected state is

µproj.(AZ) = J

〈
Φ(AZ)

∣∣PJM µ
(1)
0 PJM

∣∣Φ(AZ)〉〈
Φ(AZ)

∣∣PJM Jz PJM

∣∣Φ(AZ)〉 . (7)

However, J-projection requires a demanding and careful computation, particularly for odd-

A nuclei. Whereas a code for the g.s.’s of even-even nuclei has been developed [70], no

J-projection code is available for the SCMF solutions in odd-A nuclei associated with the

GEM at this moment. It is a delicate question that should depend on the input, i.e.,

effective interaction or EF, which of the pictures relying on the wave function or the picture

provided by the KS theory is suitable. In the vicinity of the doubly-magic core, the breaking

of the J quantum number is not quite serious. As will be shown in Sec. III B, we have

µMF(AZ) ≈ µproj.(AZ). It allows us to postpone, for the time being, answering which picture

is appropriate for the present case.

For a state having one-particle or one-hole on top of the doubly-magic core without any

residual correlations, the orbit of the particle or hole determines the M1 moment because

the core has no contribution. This s.p. value is known as the Schmidt value [4],

µs.p.(τ, ℓj) = j

[
gℓ,τ ±

gs,τ − gℓ,τ
2ℓ+ 1

] (
j = ℓ± 1

2

)
. (8)

Even in the nuclei adjacent to the doubly-magic core, the measured M1 moments deviate

from µs.p.(τ, ℓj) in practice. We shall mainly discuss displacement of the measured (µexp.)
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and calculated M1 moments from µs.p.(τ, ℓj), defining

∆µ(AZ) := µ(AZ)− µs.p.(τ, ℓj) . (9)

To be precise, the center-of-mass (c.m.) motion is desirable to be removed in the orbital

angular momentum ℓi in Eqs. (1) and (5) with replacing ℓi by ℓ′i, where

ℓ′i = r′i × p′
i ; r′i = ri −R , p′

i = pi −
P

A
, R :=

1

A

∑
i

ri , P :=
∑
i

pi . (10)

We have confirmed that this c.m. correction is negligibly small. In relation to the deviation

from µs.p., the influences of the MEC and the isobar (e.g., ∆-h) excitation have been argued.

We neglect them, yielding a brief discussion on this point in Sec. IV.

D. Electric quadrupole moments

While the main subject of this paper is the M1 moment, the quadrupole moments also

carry useful information about the s.p. nature of the nuclei neighboring the doubly-magic

core. The quadrupole operator is given as

Q
(2)
0,τ =

√
16π

5

∑
i∈τ

r′2i Y
(2)
0 (r̂′i) . (11)

Here and in the following, r = |r| and r̂ = r/r. The electric quadrupole (E2) moment is

eQp(
AZ) : =

〈
ΨJJ(

AZ)
∣∣eQ(2)

0,p

∣∣ΨJJ(
AZ)

〉
=

〈
ΨJ(

AZ)
∣∣∣∣eQ(2)

p

∣∣∣∣ΨJ(
AZ)

〉
√
2J + 1

(
J J 2 0

∣∣J J
)
.

(12)

From the SCMF solution |Φ(AZ)⟩, the E2 moments are calculated by

eQMF
p (AZ) = cM

〈
Φ(AZ)

∣∣eQ(2)
0,p

∣∣Φ(AZ)〉 . (13)

Since |Φ(AZ)⟩ is selected as the lowest-energy state among several candidates having various

Jz values, we have the factor cM on the rhs of Eq. (13), for which we adopt

cM =
3J2 − J(J + 1)

3M2 − J(J + 1)
; M :=

〈
Φ(AZ)

∣∣Jz∣∣Φ(AZ)〉 , (14)

as indicated by the Wigner-Eckart theorem. For J in cM , the value of the observed g.s. (or

of the metastable state) is inserted again.
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Even when the doubly magic core is entirely spherical without polarization, the last

nucleon or hole produces a quadrupole moment. We take this s.p. value as a reference, since

the deviation from it suggests how much the core is polarized. The s.p. value of Q(AZ) is

expressed as

Qs.p.(nℓj) = ±
√

16π

5
⟨nℓj|r2|nℓj⟩r

⟨ℓj||Y (2)(r̂)||ℓj⟩√
2j + 1

(
j j 2 0 | j j

)
. (15)

To analytically estimate the radial matrix element ⟨nℓj|r2|nℓj⟩r in Eq. (15), we employ the

isotropic harmonic-oscillator wave-function with ℏω = 41.2A−1/3 MeV. The negative sign

on the rhs of Eq. (15) applies to single-hole states.

III. RESULTS

A. Spin properties of effective interactions in infinite nuclear matter

Before discussing the results of the M1 moments, we compare spin properties in the

nuclear matter provided by the currently used effective interactions or EFs.

We emphasize again that the M3Y-P6 interaction keeps the spin-isospin channel of the

OPEP, which we denote by V
(C)
OPEP, and that it has the tensor force V (TN) derived from the

G-matrix. In contrast, neither of V
(C)
OPEP nor V (TN) is explicitly included in most phenomeno-

logical interactions, e.g., D1S, although a part of their effects might be incorporated in an

effective manner.

The spin properties predicted by each effective interaction are typically expressed in terms

of the Landau-Migdal parameters. We compare the gℓ and g′ℓ values for ℓ = 0, 1 obtained

from M3Y-P6 and D1S [60] in Table I. Whereas experimental information is limited, the

data on the GT transition suggest g′0 ≈ 1 [71, 72] 1. It seems that D1S gives too small g′0.

In the M3Y case, g′0 seems consistent with the data, to which V
(C)
OPEP yields an important

contribution [60].

UNEDF1 does not originally contain spin-dependent channels. In Ref. [37], simple terms

corresponding to the delta interaction have been added to the spin-dependent channels,

whose strengths are determined in terms of the Landau-Migdal parameter g0 and g′0. For

1 In Refs. [71, 72], the g′ values are measured in the unit (fπ/mπ)
2, which should be scaled by a factor of

2.6M∗
0 /M ∼ 1.8 when comparing with the normal values, where M∗

0 is the k-mass at the Fermi momentum.
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TABLE I. Comparison of Landau-Migdal parameters gℓ and g′ℓ (ℓ = 0, 1) at the saturation point

among effective interactions and EFs. The values for UNEDF1 are those adopted in Ref. [37].

M3Y-P6 D1S UNEDF1

g0 0.272 0.466 0.4

g1 0.231 −0.184 0.0

g′0 0.970 0.631 1.7

g′1 0.157 0.610 0.0

the isoscalar term, g0 = 0.4 is imposed. The M1 moments significantly depend on the spin-

isospin interaction. Utilizing this dependence, g′0 is adjusted to the M1 moments, and the

value 1.7 is adopted 2. These g0 and g′0 values used together with UNEDF1 in Ref. [37] are

also shown in Table I.

B. Magnetic dipole moments

We first depict the ∆µ values in nuclei adjacent to 16O and 40Ca, in Fig. 1. In these nuclei,

the M1 moments hardly deviate from µs.p. within the lowest-order perturbation theory (see

Sec. III E), because of the ℓs-closure at 16O and 40Ca. Therefore, it is not surprising that

all the SCMF results yield negligibly small ∆µ. Although ∆µ is visible in the experimental

data near 40Ca, it still stays small.

In Fig. 2, we plot the ∆µ values in neighbors of the doubly-closed nuclei, in which one of

Z and N is an ℓs-closed and the other is a jj-closed magic number. It has been known that

N = 14 behaves like a magic number in the proton-deficient region, and 22O is analogous

to a doubly-magic nucleus. We add 21O in Fig. 2 and compare the SCMF results with the

new data [74]. Figures 3 and 4 display the ∆µ values near jj-closed nuclei, separating them

into odd-N and odd-Z ones. At 131Sn, the data on the metastable state with (11/2)− is

available, which corresponds to the neutron single-hole state (0h11/2)
−1 on top of 132Sn. It

is included in Fig. 3, labeled as 131Snm. The ratios ∆µ/∆µexp. are also displayed in Figs. 2,

3 and 4. They elucidate how well the quenching is reproduced in individual calculations.

2 This g′0 value is not incompatible with the data because UNEDF1 gives a large M∗
0 (≈ M).
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FIG. 1. ∆µ values in nuclei adjacent to ℓs-closed shell. Nuclides and spin-parities are shown at

the top and bottom of the figure. Red circles and blue triangles represent the present results with

M3Y-P6 and D1S, respectively. Skyblue diamonds and orange inverse triangles are the J-projected

results with D1S and UNEDF1 quoted from Ref. [37]. Green pluses are χEFT results of Ref. [46].

Experimental data are taken from Ref. [73] and shown by black crosses.

Let us first compare two types of D1S results, the present SCMF results (blue triangles)

and the J-projected results in Ref. [37] (skyblue diamonds). It is noted that the difference of

the results between Ref. [37] and the present work should be attributed to the J-projection

despite the difference in computational methods, as far as both are nearly convergent. Note

that J-projected results have not been reported for 21O, (7/2)+ state of 101Sn, (3/2)+ state

of 131Sn, and (5/2)− state of 79Cu. We observe that the results are so close (µMF ≈ µproj.).

It is appropriate to investigate µ via the J-unprojected SCMF calculation, circumventing

the doctrinal discussion mentioned in Sec. II C.

The SCMF approach with D1S yields correct signs of ∆µ (except for 207Pb), but the

degree is insufficient compared with the experimental data. With the M3Y-P6 semi-realistic

interaction, ∆µ values are almost always improved from the D1S case, though overshooting

in some nuclei and remaining insufficient in others. In the cases where D1S has already

reproduced the data well, so does M3Y-P6. The M3Y-P6 results are close to the χEFT re-

sults for the nuclei handled in Ref. [46]. It is commented that, compared with UNEDF1 plus

spin-dependent terms fitted to the data, M3Y-P6 yields comparable or even slightly better

agreement with the experiments. The source of the dependence of ∆µ on the interaction
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FIG. 2. Upper panel: ∆µ values in nuclei adjacent to the doubly-magic nuclei, having ℓs-closed

Z and jj-closed N , and vice versa. See Fig. 1 for conventions. Experimental data are taken from

Refs. [73] and [74] (for 21O). Lower panel: Calculated ∆µ values relative to ∆µexp.. Red and blue

bars are the current results with M3Y-P6 and D1S, respectively. The J-projected results with D1S

and UNEDF1 quoted from Ref. [37] are also presented by skyblue diamonds and orange inverse

triangles, for reference.

will be analyzed in the subsequent subsections.

C. Electric quadrupole moments

The deviation ∆µ reflects the CP, i.e., weak erosion of the doubly-magic core. It could be

induced by quadrupole deformation, in part. In this subsection, we examine the quadrupole

deformation predicted in the SCMF approach. Correlations due to the spin-dependent
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FIG. 3. Upper panel: ∆µ values in odd-N nuclei adjacent to the jj-closed shell. See Fig. 1 for

other conventions. Experimental data are taken from Refs. [73, 75] and [76] (for 133Sn). Lower

panel: Calculated ∆µ values relative to ∆µexp. when µexp. is available. See Fig. 2 for conventions.

interaction may also be important for ∆µ, which will be discussed later.

The Qp values in the nuclei near the doubly-magic core are depicted in Figs. 5, 6, 7 and

8. In practice, we plot Qp divided by R2 = (1.12A1/3 fm)2, to reduce dependence on the

nuclear size. As seen in Fig. 5, the Qp values for 17F, 39K and 41Sc, which are odd-Z nuclei

neighboring 16O and 40Ca, barely deviate from the s.p. values in both the experimental data

and the SCMF results. Consistent with ∆µ in Fig. 1, this outcome suggests that the erosion

of the magic core is not so strong as it is far beyond the perturbative regime, though not

negligible. Note that Qn’s are presented as the s.p. values for the odd-N nuclei 17O and

39,41Ca, instead of Qp’s. The measured and calculated Qp’s are not vanishing, indicating CP,

though their absolute values are smaller than the s.p. values of Qn. It is confirmed that the
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FIG. 4. Upper panel: ∆µ values in odd-Z nuclei adjacent to the jj-closed shell. See Fig. 1 for

conventions. Experimental data are taken from Refs. [73, 75] and [44] (for 131In). Lower panel:

Calculated ∆µ values relative to ∆µexp.. Green bars represent the χEFT results of Ref. [46]. See

Fig. 2 for other conventions.

SCMF calculations well reproduce the measured Qp values both in the odd-Z and odd-N

nuclei.

In the odd-N nuclei shown in Fig. 6, 21O, 47,49Ca, the SCMF results of Qp reveal CP

effects, coincidentally close to the s.p. values of Qn. A similar coincidence is found for

several nuclei in Fig. 7. The Qp value is enhanced from the s.p. value in the odd-Z nuclei,

49Sc in Fig. 6 and the nuclei in Fig. 8. We find good agreement of the SCMF results with

the available data. The present SCMF results with D1S and M3Y-P6 are close to each

other. Thus, it is reasonable to conclude that the SCMF calculations well describe the weak

quadrupole deformation of these nuclei, and the degree of deformation is not sensitive to
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FIG. 6. Qp/R
2 values in nuclei of Fig. 2. See Fig. 5 for conventions. Experimental data are taken

from Refs. [77], [78] (for 47,49Ca) and [79] (for 49Sc).

the effective interactions.

D. Occupation numbers on individual (ℓj) component

We next investigate occupation numbers on individual (ℓj) components, ⟨Nτ,ℓj⟩. At the

spherical limit, the occupation numbers are determined by those of the adjacent doubly-

magic core and the last nucleon, and we denote them by N sph
τ,ℓj . Take neutron orbitals at
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FIG. 8. Qp/R
2 values in nuclei of Fig. 4. See Fig. 5 for conventions. Experimental data are taken

from Refs. [77] and [81] (for 133Sb).

41Ca as an example. We have N sph
n,s1/2

= 4 because of the occupation of the 0s1/2 and 1s1/2

orbits, N sph
n,p3/2

= 4, N sph
n,p1/2

= 2, N sph
n,d5/2

= 6, N sph
n,d3/2

= 4, and N sph
n,f7/2

= 1 because of the last

neutron. Instead of the occupation numbers themselves, their difference from those at the

spherical limit, ∆⟨Nτ,ℓj⟩ := ⟨Nτ,ℓj⟩ − N sph
τ,ℓj , will be plotted. |∆⟨Nτ,ℓj⟩| ≪ 1 verifies that the

breaking of magicity stays weak.

Figures 9 and 10 depict ∆⟨Nτ,ℓj⟩ at 209Pb and 131In, respectively. We do not find a

notable qualitative difference in other nuclei. At 209Pb, the last neutron occupies the 1g9/2

orbit at the spherical limit. We observe that it induces proton excitation from h11/2 to
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FIG. 9. ∆⟨Nτ,ℓj⟩ at 209Pb. The SCMF results with M3Y-P6 and D1S are shown by red and blue

bars, respectively.

f7/2 both in the D1S and M3Y-P6 results. As these two orbits strongly couple under the

quadrupole field, they imply the relevance of the quadrupole deformation, even though it is

weak. Similar excitations relevant to quadrupole deformation are found on the neutron side

(i13/2 to g9/2) and at 131In (g9/2 to d5/2 on the proton side and h11/2 to f7/2 on the neutron

side). In addition, we find sizable excitations to the neutron i11/2 component at 209Pb and

the proton g7/2 component at 131In. They are ℓs partners of the high-j occupied orbits

of the doubly-magic cores, and the excitations exhibit correlation with respect to the spin

d.o.f. Though weaker, excitations to the ℓs partners are visible also on the proton (neutron)

side at 209Pb (131In). As discussed in Subsec. III E, these excitations trigger ∆µ within the

lowest-order perturbation.

It is noticed that excitations to the ℓs partners are always stronger in the M3Y-P6 results
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FIG. 10. ∆⟨Nτ,ℓj⟩ at 131In. Conventions are common with Fig. 9.

than in the D1S results, implying strong spin correlations in M3Y-P6. This difference in

∆⟨Nτ,ℓj⟩ accounts for the interaction-dependence of ∆µ. It will be instructive to specify

which channel of the interaction gives rise to this difference.

E. Analysis via lowest-order perturbation

As long as the erosion of the doubly-magic core is not serious, analysis in terms of

the perturbation theory should be useful. Owing to its linear nature, the lowest-order

perturbation allows us to separate the contributions of each channel of the interaction.

In the lowest-order perturbation, ∆µ is expressed by the diagram of Fig. 11 and the

following equation [82],

∆µpert.(AZ) = −2
〈
j m = j

∣∣µ(1)
0

∣∣j (j2 j−1
1 )(1); j m = j

〉 〈j (j2 j−1
1 )(1); j

∣∣V ∣∣j〉
ϵj2 − ϵj1

. (16)
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FIG. 11. Goldstone diagram for the lowest-order contribution ∆µpert.. V̂ represents the interaction

and µ̂ the M1 operator.

Here |j⟩ is the unperturbed state, which has a single particle or hole on the orbit j on

top of the doubly-magic core, and
∣∣j (j2 j−1

1 )(1); j
〉
is composed of the particle or hole on j

and the CP component (j2 j
−1
1 )(1), the excitation from j1 to j2. For the operator µ(1) to

act on, the polarization is restricted to the 1+ spin-parity, and ∆µpert. of Eq. (16) thereby

stands for CP due to the spin correlation. The coupling of the particle (or hole) on j to

(j2 j
−1
1 )(1) must result in J = j due to the angular-momentum conservation via V . All the

relevant s.p. energies (ϵj1 , ϵj2) and functions are obtained by the SCMF calculations at

the doubly-magic nucleus. Note that
〈
j m

∣∣µ(1)
0

∣∣j (j2 j−1
1 )(1); j m

〉
is evaluated from the s.p.

matrix element ⟨j1||µ(1)||j2⟩, and
〈
j (j2 j

−1
1 )(1); j

∣∣V ∣∣j〉 from the two-body elements of the

interaction ⟨j j2|V |j j1⟩.

The perturbative picture well accounts for the reason why ∆µ is small near the ℓs-closed

nuclei, as shown in Fig. 1. Because the µ(1) operator in Eq. (1) does not change the orbital

angular momentum of the s.p. state, j1 and j2 in the polarization component (j2 j
−1
1 )(1)

should be an ℓs partner. The lowest-order term ∆µpert. in Eq. (16) requires occupied j1

and unoccupied j2, which is forbidden at the ℓs-closed core. The smallness of measured ∆µ

around the ℓs-closed nuclei is evidence for the dominance of CP in ∆µ.

The SCMF results ∆µMF exhibit effects beyond ∆µpert.. For instance, the quadrupole

polarization like [(p1f7/2)(p0h
−1
11/2)] observed in Fig. 9 is distinguished from the (j2 j

−1
1 )(1)

polarization. As discussed in Subsecs. III C and IIID, M3Y-P6 and D1S are similar in the

quadrupole correlation but have difference in the spin correlation. We investigate through

∆µpert. which part of the interaction makes this difference.
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FIG. 12. ∆µpert. relative to ∆µMF with M3Y-P6 for nuclei of Fig. 3. Red (blue) bars represent

∆µpert. with M3Y-P6 (D1S). ∆µMF with D1S (relative to ∆µMF with M3Y-P6) is shown in blue

triangles. In ∆µpert. with M3Y-P6, hatched and filled areas display the contribution of V
(C)
OPEP and

V (TN).

The ratio ∆µpert./∆µMF will provide a measure of how well ∆µpert. approximates ∆µ. We

adopt the ∆µMF values with M3Y-P6 as a reference. In Fig. 12, ∆µpert. relative to ∆µMF

with M3Y-P6 is depicted for the nuclei handled in Fig. 3. ∆µpert. with D1S is also presented

in terms of the ratio to ∆µMF with M3Y-P6. Deviation of ∆µpert./∆µMF from unity shows

that the perturbation of Eq. (16) is not sufficient for a fully quantitative evaluation of ∆µ. It

also holds for the results with D1S, as recognized by comparing the blue bars and triangles in

Fig. 12. Still, the deviation of ∆µpert. from ∆µMF stays within a factor of two, and analysis

through ∆µpert. is useful for the present purpose.

Contributions of V
(C)
OPEP and V (TN) are assessed by inserting them into V in Eq. (16), and

shown in Fig. 12. Although the effective interaction of the SCMF calculations affects the

s.p. energies ϵj as well as ⟨V ⟩ in Eq. (16), it is more or less tuned so as to give reasonable s.p.

energies. We neglect the influence of the individual channel on ϵj, keeping ϵj obtained from

the full SCMF calculation. It is clearly seen that V
(C)
OPEP substantially contributes to ∆µ,

as expected from its effects on the spin properties discussed in Sec. IIIA. Whereas V (TN)

affects ∆µ cooperatively with V
(C)
OPEP, its effects are smaller than those of V

(C)
OPEP; sizable for

some nuclei but not so for others. Concerning the tensor force, it is fair to remind that V (TN)

affects the s.p. energies. While some of the effects may be incorporated into the central

channels, the explicit inclusion of V (TN) is important in their Z- and N -dependence.
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Intriguingly, the summed contributions of V
(C)
OPEP and V (TN) are close to the difference

of ∆µpert. between M3Y-P6 and D1S. While the spin-dependent channels of the effective

interaction have been difficult to fix from a fully phenomenological standpoint, realistic

spin-isospin and tensor channels connected to the bare nucleonic interaction, particularly

the channel originating from the one-pion exchange, are helpful. The importance of the

pion exchange is harmonious with the χEFT picture.

IV. SUMMARY AND DISCUSSIONS

We have investigated magnetic dipole (M1) moments adjacent to doubly-magic nuclei

using self-consistent mean-field (SCMF) approaches. Hartree-Fock calculations assuming the

Jz (axial), P (parity) and RT (R is the reflection with respect to the y-axis) symmetries, but

allowing the breaking of the T (time-reversal) symmetry, have been implemented with finite-

range interactions. No adjustable parameter is newly introduced. The M3Y-P6 interaction,

which keeps realistic spin-isospin and tensor channels, is primarily applied, and its results

are compared with those obtained from other interactions. The M1 moments deviate from

the Schmidt values, implying the quenching of the spin matrix elements. The source of the

deviation in the SCMF results has been analyzed via the quadrupole moments, occupation

numbers, and comparison with the results of the lowest-order perturbation.

The SCMF results with M3Y-P6 are in reasonable agreement with the measured M1

moments of nuclei neighboring the doubly-magic core. The deviation from the Schmidt

values is well described for the nuclei adjacent to jj-closed magicity, owing to the cooperative

effects of weak quadrupole deformation and spin correlation. Compared with the results of

D1S, which is one of the standard SCMF effective interactions, M3Y-P6 yields improvement

on almost all nuclei under investigation. The M3Y-P6 results are comparable to, or even

slightly better than, the UNEDF1 results of Ref. [37], whose spin-isospin channel was fitted

to the measured M1 moments. The SCMF results with M3Y-P6 are also close to the shell-

model results with the interaction derived from the chiral effective-field theory (χEFT) in

Ref. [46]. In comparison with the D1S results, the improvement can be attributed primarily

to the spin-isospin channel and secondarily to the tensor channel in M3Y-P6, which are

considered realistic and retain a microscopic origin. The UNEDF1 results suggest that a

central spin-isospin channel can express certain parts of these effects, even imitating some
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tensor-force effects. It is still noted that the distinction between the central and tensor

channels is vital when extrapolating the properties in an astrophysical environment.

Further consequences can be addressed. Good agreement of the D1S results without

the J-projection and those with the projection in Ref. [37] suggests that the SCMF wave-

functions may be used to describe M1 moments without handling additional rotational

correlations. This implies that the M1 moments can be a principal variable of the generalized

Kohn-Sham (KS) framework. In the results from χEFT [46], the meson-exchange current

(MEC) has improved the agreement with experimental data, which counteracts the CP in

most cases [39, 40, 46]. On the other hand, the coupling of the virtual isobar excitation to

the magnetic field has not been taken into account. Since these effects tend to cancel each

other [39, 40], though not completely, the M1 moments could be calculated by the one-body

operator of Eq. (1) to moderate precision. The results reported in Refs. [42–45] indicate

that the KS approach is promising to describe M1 moments in nuclei departing from the

doubly-magic core. However, it is not easy to completely fix the spin-dependent channels

of the effective interaction by fitting. The present work exemplifies that microscopic theory

could provide good guidance. Whereas the one-pion exchange is an important ingredient of

the central spin-isospin channel, there are few codes applicable to the Yukawa interaction,

with the exception of the code used in the present work [66–68]. Along this line, local

approximation based on the density-matrix expansion (DME) [83–85] has been applied to

the Fock term in, e.g., Ref. [86]. According to Ref. [87], the DME leads to errors of a

few to ten percent, which is moderately good but not excellent precision. It is desirable

to keep paying attention to the precision of the DME, particularly for the spin-dependent

channels [85].

Within the perturbation theory, the M1 moments near the ℓs-closed nuclei hardly devi-

ate from the Schmidt values at the lowest order, although the higher-order terms are not

necessarily negligible [39, 40, 88]. While the present SCMF results are consistent with the

weak quenching in vicinity of the ℓs-closure, they fail to describe the measured ∆µ values

precisely, as seen for 41Ca, 39K and 41Sc in Fig. 1. In vicinity of the jj-closure, apparent dis-

crepancy exists at the Z = odd nuclei 133Sb, 207Ti and 209Bi, while agreement is remarkable

at 131Snm, 133Sn and 209Pb. We note that the χEFT results also deviate from the data at the

above Z = odd nuclei [46]. At 209Bi, it has been shown that the MEC could exceptionally

facilitate quenching [40, 41, 46]. It would be of interest to incorporate corrections due to
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the MEC, which are represented by two-body operators [89, 90], and isobar excitations into

the SCMF calculations of M1 moments at some nuclei, e.g., 209Bi, though it is beyond the

scope of the present work.

Appendix A: Relation of time-reversality to other symmetries in one-body fields

Symmetries concerning the rotation may restrict the effect of the time-reversality (i.e.,

T -symmetry). In this Appendix, we discuss the relations of the T -symmetry to the spherical

(J) or axial (Jz), parity (P), and reflection (R) symmetries in terms of the one-body density

matrix, particularly in the spherical-basis representation. The argument in this Appendix

serves as one of the grounds for the numerical calculations in the present work. The self-

consistent symmetries were minutely investigated for the local densities and currents in

Ref. [91]. In contrast, our discussion is not constrained to local fields and may be transparent

in specific cases.

The mean fields are represented by the one-body density matrix ϱkk′ (:= ⟨Φ|c†k′ck|Φ⟩) and

the pairing tensor κkk′ (:= ⟨Φ|ck′ck|Φ⟩), in general. Here, k and k′ denote the s.p. bases, and

c†k (ck) is the corresponding creation (annihilation) operator. Symmetries in the mean fields

are nothing but those in ϱkk′ and κkk′ . Note that ϱkk′ is hermitian (i.e., ϱk′k = ϱ∗kk′) and

κkk′ is skew-symmetric (i.e., κk′k = −κkk′). We restrict ourselves here to the symmetries

in ϱkk′ ; those in κkk′ can be discussed analogously. Adopting the spherical bases, we take

k = (νℓjm), where ℓ, j and m are the orbital angular momentum, the summed angular

momentum and its z-component, respectively. The label ν distinguishes the radial wave

functions. We do not consider proton-neutron mixing in the s.p. states, and omit the

isospin index for the sake of simplicity. By using the s.p. basis function ϕk(rσ), where σ is

the spin index, ϱkk′ is readily transformed to the coordinate representation ϱ(rσ, r′σ′),

ϱkk′ =
∑
σσ′

∫
d3r d3r′ ϱ(rσ, r′σ′)ϕ∗

k(rσ)ϕk′(r
′σ′) . (A1)

The time-reversed state of k is denoted by k̄. In the concrete, k̄ is (νℓj − m) with an

appropriate phase, for which we use the convention (−)j+ℓ−m. Namely, the s.p. bases are

RPT -invariant. The T -symmetry in the mean-fields is recognized as,

T -symmetry : ϱk̄k̄′ = ϱ∗kk′ . (A2)
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The complex conjugate on the rhs is a result of the T operation on the transformation

coefficients of the s.p. states [e.g., U and V in Eq. (B1)].

Under the J-symmetry, ϱkk′ is diagonal with respect to j and m, and has no dependence

on m,

ϱkk′ = δjj′δmm′ ϱ
(j)
νℓ,ν′ℓ′ . (A3)

TheR-symmetry plays no additional roles in this case. Equation (A2) is reduced to, applying

the present phase convention,

(J+ T )-symmetry : (−)ℓ−ℓ′ ϱ
(j)
νℓ,ν′ℓ′ = ϱ

(j)∗

νℓ,ν′ℓ′ . (A4)

We usually have P-symmetry when we maintain spherical symmetry. Then, ϱkk′ is also

diagonal with respect to ℓ, and Eq. (A3) reads,

ϱkk′ = δjj′δℓℓ′δmm′ ϱ
(ℓj)
ν,ν′ . (A5)

The condition of the T -symmetry (A2) becomes

(J+ P + T )-symmetry : ϱ
(ℓj)
ν,ν′ = ϱ

(ℓj)∗

ν,ν′ . (A6)

Equation (A6) indicates, since ν is the label for the radial part of the s.p. basis, that

the violation of the T -symmetry may take place only through the off-diagonal element

with respect to the radial part, irrelevant to the angular-spin part. It is not a surprising

consequence since the (J+ P)-symmetry fixes the angular-spin part of the s.p. states.

Under the Jz-symmetry, ϱkk′ is diagonal with respect to m but not necessarily to j,

ϱkk′ = δmm′ ϱ
(m)
νℓj,ν′ℓ′j′ . (A7)

Equation (A2) is reduced to,

(Jz + T )-symmetry : (−)j+ℓ−j′−ℓ′ ϱ
(−m)
νℓj,ν′ℓ′j′ = ϱ

(m)∗

νℓj,ν′ℓ′j′ . (A8)

If we have the P-symmetry in addition, Eq. (A8) leads to

(Jz + P + T )-symmetry : (−)j−j′ ϱ
(−m)
νℓj,ν′ℓ′j′ = ϱ

(m)∗

νℓj,ν′ℓ′j′ . (A9)

When we have the R-symmetry, even without the P-symmetry, the density matrix in

Eq. (A7) should satisfy,

(Jz +R)-symmetry : (−)j−j′ ϱ
(−m)
νℓj,ν′ℓ′j′ = ϱ

(m)
νℓj,ν′ℓ′j′ . (A10)
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The RT -symmetry rather than the individual R or T symmetry yields

(Jz +RT )-symmetry : (−)ℓ−ℓ′ ϱ
(m)
νℓj,ν′ℓ′j′ = ϱ

(m)∗

νℓj,ν′ℓ′j′ , (A11)

and the RPT -symmetry derives

(Jz +RPT )-symmetry : ϱ
(m)
νℓj,ν′ℓ′j′ = ϱ

(m)∗
νℓj,ν′ℓ′j′ . (A12)

Appendix B: Mean-field equation under Jz conservation

While the Hartree-Fock calculations have been applied in the present work, in this Ap-

pendix we derive the mean-field equation in a more general respect; namely, the Hartree-

Fock-Bogoliubov (HFB) equation. The creation and annihilation operators associated with

the s.p. basis ϕνℓjm are denoted by c†νℓjm and cνℓjm. We define the modified annihilation

operator as c̃νℓjm = (−)j+mcνℓj−m as in Ref. [67]. Under the Jz conservation, the Bogoliubov

transformation is given by

α†
n,m =

∑
νℓj

[
U

(m)
νℓj,nc

†
νℓjm + (−)j+m V

(−m)
νℓj,n c̃νℓjm

]
. (B1)

The density matrix and the pairing tensor are then expressed by

ϱ
(m)
νℓj,ν′ℓ′j′ =

∑
n

V
(−m)∗
νℓj,n V

(−m)
ν′ℓ′j′,n , κ

(m)
νℓj,ν′ℓ′j′ =

∑
n

V
(−m)∗
νℓj,n U

(−m)
ν′ℓ′j′,n , (B2)

having the following properties,

ϱ
(m)
ν′ℓ′j′,νℓj = ϱ

(m)∗
νℓj,ν′ℓ′j′ , κ

(−m)
ν′ℓ′j′,νℓj = −κ

(m)
νℓj,ν′ℓ′j′ . (B3)

It is found that the HFB Hamiltonian has the structure as

H =


h(m) 0 0 ∆(m)

0 h(−m) ∆(−m) 0

0 −∆(m)∗ −h(m)∗ 0

−∆(−m) 0 0 −h(−m)∗

 , (B4)

leading to the HFB equation as

H′

U(m) V(−m)∗

V(m) U(−m)∗

 =

U(m) V(−m)∗

V(m) U(−m)∗

 diag[ε(m)] 0

0 −diag[ε(−m)]

 ;

H′ =

 h(m) ∆(m)

−∆(−m)∗ −h(−m)∗

 .

(B5)
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From the total energy of the system E represented by (ϱ, κ, κ∗), h(m) is defined by the deriva-

tive of E with respect to ϱ, and ∆(m) by the derivative with respect to κ∗. Corresponding

to Eq. (B3), we have h(m)T = h(m)∗ and ∆(−m)T = −∆(m), assuring H′ to be hermitian. It

is remarked that dim(H′) = 1
2
dim(H) and Eq. (B5) yields all the eigensolutions without

doubling, even in the HFB framework. Its origin is the property of the pairing tensor in

Eq. (B3), which connects the matrices for −m with those for m, leading to the structure of

H shown in Eq. (B4). Whereas we do not necessarily impose orthogonality for the radial

part of s.p. bases [66–68], we write down Eq. (B5) for orthogonal bases. The norm matrix

should be supplemented for non-orthogonal bases [67].

When we have P-conservation, Eq. (B5) is separable into sectors of individual parities.

Since we adopt the RPT -invariant basis functions here, we can restrict all the matrices U,

V, h and ∆ to be real numbers under the RPT symmetry, as realized in Eq. (A12). The

computer code has been developed accordingly, and is planned to be published in the near

future.
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[29] V. Somà, Front. Phys. 8, 340 (2020).

[30] H. Hergert, S.K. Bogner, T.D. Morris, A. Schwenk and K. Tsukiyama, Phys. Rep. 621, 165

(2016).

[31] H. Nakada, Phys. Scr. 98, 105007 (2023).

[32] M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck,

M.V. Stoitsov and S.M. Wild, Phys. Rev. C 85, 024304 (2012).

[33] M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sarich,

28



N. Schunck, S.M. Wild, D. Davesne, et al., Phys. Rev. C 89, 054314 (2014).

[34] U. Hofmann and P. Ring, Phys. Lett. B 214, 307 (1988).

[35] R.J. Furnstahl and C.E. Price, Phys. Rev. C 40, 1398 (1989).

[36] J.M. Yao, H. Chen and J. Meng, Phys. Rev. C 74, 024307 (2006).

[37] P.L. Sassarini, J. Dobaczewski, J. Bonnard and R.F. Garcia Ruiz, J. Phys. G 49, 11LT01

(2022).

[38] J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics (John Wiley & Sons, New York,

1952).

[39] I.S. Towner, Phys. Rep. 155, 263 (1987).

[40] A. Arima, K. Shimizu, W. Bentz and H. Hyuga, in Advances in Nuclear Physics, ed. by

J.W. Negele and E. Vogt, vol. 18 (Plenum, New York, 1988), p. 1.

[41] J. Li and J. Meng, Front. Phys. 13, 132109 (2018).

[42] M. Borrajo and J.L. Egido, Phys. Lett. B 764, 328 (2017).
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